Toshifumi Takasusuki
Dokkyo Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toshifumi Takasusuki.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Ann M. Gregus; Suzanne Doolen; Darren S. Dumlao; Matthew W. Buczynski; Toshifumi Takasusuki; Bethany Fitzsimmons; Xiao Ying Hua; Bradley K. Taylor; Edward A. Dennis; Tony L. Yaksh
Peripheral inflammation initiates changes in spinal nociceptive processing leading to hyperalgesia. Previously, we demonstrated that among 102 lipid species detected by LC-MS/MS analysis in rat spinal cord, the most notable increases that occur after intraplantar carrageenan are metabolites of 12-lipoxygenases (12-LOX), particularly hepoxilins (HXA3 and HXB3). Thus, we examined involvement of spinal LOX enzymes in inflammatory hyperalgesia. In the current work, we found that intrathecal (IT) delivery of the LOX inhibitor nordihydroguaiaretic acid prevented the carrageenan-evoked increase in spinal HXB3 at doses that attenuated the associated hyperalgesia. Furthermore, IT delivery of inhibitors targeting 12-LOX (CDC, Baicalein), but not 5-LOX (Zileuton) dose-dependently attenuated tactile allodynia. Similarly, IT delivery of 12-LOX metabolites of arachidonic acid 12(S)-HpETE, 12(S)-HETE, HXA3, or HXB3 evoked profound, persistent tactile allodynia, but 12(S)-HpETE and HXA3 produced relatively modest, transient heat hyperalgesia. The pronociceptive effect of HXA3 correlated with enhanced release of Substance P from primary sensory afferents. Importantly, HXA3 triggered sustained mobilization of calcium in cells stably overexpressing TRPV1 or TRPA1 receptors and in acutely dissociated rodent sensory neurons. Constitutive deletion or antagonists of TRPV1 (AMG9810) or TRPA1 (HC030031) attenuated this action. Furthermore, pretreatment with antihyperalgesic doses of AMG9810 or HC030031 reduced spinal HXA3-evoked allodynia. These data indicate that spinal HXA3 is increased by peripheral inflammation and promotes initiation of facilitated nociceptive processing through direct activation of TRPV1 and TRPA1 at central terminals.
Brain Research | 2007
Hideaki Iwata; Toshifumi Takasusuki; Shigeki Yamaguchi; Yuuichi Hori
Previous research has shown that peripheral inflammation and peripheral nerve injury alter the properties of NMDA receptors in the spinal dorsal horn. However, there is no direct evidence that demonstrates the influence of peripheral nerve injury on NMDA receptor-mediated synaptic transmission in the spinal dorsal horn. Using whole cell tight-seal methods, NMDA receptor-mediated excitatory postsynaptic currents (NMDA EPSCs) were recorded from superficial dorsal horn neurons in adult mouse spinal cord slices. Peripheral nerve injury-induced changes in the pharmacological and electrophysiological properties of synaptic NMDA receptors were studied. The ratio of the amplitude of NMDA EPSCs to that of non-NMDA EPSCs was larger in nerve-ligated neuropathic mice than in sham-operated control mice. The decay phase of the NMDA EPSCs was slower in nerve-ligated neuropathic mice. The NR2B subunit-specific NMDA receptor antagonist ifenprodil (10 microM) reduced the amplitude of the NMDA EPSCs and shortened their decay phase. The sensitivity of NMDA EPSCs to ifenprodil was significantly larger in nerve-ligated neuropathic mice than in sham-operated control mice. Single-cell RT-PCR analysis performed on superficial dorsal horn neurons showed that the incidence of NR2A mRNA-expressing neurons was reduced in nerve-ligated neuropathic mice. This result, together with the electrophysiological findings, suggests that the subunit composition of the subsynaptic NMDA receptors in the superficial dorsal horn was altered by peripheral nerve injury. Pharmacological and electrophysiological changes observed in the present experiments might be the underlying causes of the hyperalgesia and allodynia induced by peripheral nerve injury and inflammation.
Anesthesiology | 2011
Toshifumi Takasusuki; Tony L. Yaksh
Background:The authors investigated the role of different voltage-sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil), and L-type voltage-sensitive calcium channel blockers (diltiazem and verapamil). Methods:Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem, or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50 &mgr;l) was quantified. To assess substance P release, the incidence of neurokinin-1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent-stained tissues. Results:Intrathecal morphine (20 &mgr;g), ziconotide (0.3, 0.6, and 1 &mgr;g), mibefradil (100 &mgr;g, but not 50 &mgr;g), diltiazem (500 &mgr;g, but not 300 &mgr;g), and verapamil (200 &mgr;g, but not 50 and 100 &mgr;g) reduced paw flinching in phase 2 compared with vehicle control (P < 0.05), with no effect on phase 1. Ziconotide (0.3, 0.6, and 1 &mgr;g) and morphine (20 &mgr;g) significantly inhibited neurokinin-1 receptor internalization (P < 0.05), but mibefradil, diltiazem, and verapamil at the highest doses had no effect. Conclusion:These results emphasize the role in vivo of N-type but not T- and L-type voltage-sensitive calcium channel blockers in mediating the stimulus-evoked substance P release from small primary afferents and suggest that T- and L-type voltage-sensitive calcium channel blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving postsynaptic excitability.
Anesthesia & Analgesia | 2011
Toshifumi Takasusuki; Tony L. Yaksh
BACKGROUND:Gabapentin binds at the extracellular &agr;2&dgr;1 subunit of voltage- sensitive calcium channels. Some voltage-sensitive calcium channels regulate substance P release from small primary afferents. We sought to determine in vivo whether spinal and systemic gabapentin at antihyperalgesic doses will attenuate substance P release. METHODS:Rats prepared with chronic intrathecal (IT) catheters received IT vehicle or gabapentin 10 minutes before intraplantar formalin (5%, 50 &mgr;L) injection. For systemic studies, vehicle or gabapentin was delivered intraperitoneally (IP) 15 minutes before formalin injection. In separate groups of rats, to assess the effect of IT or IP gabapentin upon formalin-evoked substance P release, animals received similar treatment for assessment of flinching, but underwent transcardial perfusion with 4% paraformaldehyde 10 minutes after the formalin injection. Substance P release was determined by the incidence of neurokinin 1 receptor (NK1r) internalization in the ipsilateral and contralateral superficial dorsal horn in immunofluorescent stained tissues. RESULTS:Unilateral intraplantar formalin evoked biphasic hindpaw flinching. IT gabapentin (100 and 200 &mgr;g) and IP gabapentin (100 and 200 mg/kg) resulted in a dose-dependent reduction in phase 2, but not phase 1, flinching in comparison with vehicle-treated rats. Intraplanatar formalin resulted in NK1r internalization in the ipsilateral, but not contralateral, superficial dorsal horn. IT gabapentin (200 &mgr;g, but not 100 &mgr;g) and IP gabapentin (200 mg/kg, but not 100 mg/kg) significantly reduced ipsilateral NK1r internalization in comparison with vehicle-treated control. Importantly, internalization evoked by IT substance P was not blocked by IT gabapentin. CONCLUSION:Systemic and spinal gabapentin have an acute inhibitory effect on the release of substance P from small primary afferents and a concurrent effect upon the initiation of facilitated pain states.
Journal of Pharmacology and Experimental Therapeutics | 2013
Milad Kouchek; Toshifumi Takasusuki; Tetsuji Terashima; Tony L. Yaksh; Qinghao Xu
Delta-opioid receptors (DOR) are present in the superficial dorsal horn and are believed to regulate the release of small afferent transmitters as evidenced by the effects of spinally delivered delta-opioid preferring peptides. Here we examined the effects of intrathecal SNC80 [(+)-4-[α(R)-α-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-(methoxybenzyl)-N,N-diethylbenzamide], a selective nonpeptidic DOR agonist, in three preclinical pain models, acute thermal escape, intraplantar carrageenan-tactile allodynia, and intraplantar formalin flinches, and on the evoked release of substance P (SP) from small primary afferents. Rats with chronic intrathecal catheters received intrathecal vehicle or SNC80 (100 or 200 μg). Intrathecal SNC80 did not change acute thermal latencies or carrageenan-induced thermal hyperalgesia. However, SNC80 attenuated carrageenan-induced tactile allodynia and significantly reduced both phase 1 and phase 2 formalin-induced paw flinches, as assessed by an automatic flinch counting device. These effects were abolished by naltrindole (3 mg/kg i.p.), a selective DOR antagonist, but not CTOP (10 µg i.t.), a selective MOR antagonist. Furthermore, intrathecal SNC80 (200 μg) blocked formalin-induced substance P release otherwise evoked in the ispilateral superficial dorsal horn as measured by NK1 receptor internalization. In conclusion, intrathecal SNC80 alleviated pain hypersensitivity after peripheral inflammation in a fashion paralleling its ability to block peptide transmitter release from small peptidergic afferents, which by its pharmacology appears to represent an effect mediated by a spinal DOR.
Neuroscience Letters | 2008
Naoki Furukawa; Toshifumi Takasusuki; Teruyuki Fukushima; Yuuichi Hori
Large-conductance calcium-activated potassium channels (BK channels) have been suggested to play a substantial role in synaptic transmission in the spinal cord dorsal horn. In the present experiments, we attempted to clarify the physiological significance of BK channels in the modulation of synaptic transmission in the superficial dorsal horn where nociceptive information is processed. Spontaneously occurring excitatory postsynaptic currents (sEPSCs) were recorded from the neurons located in the superficial dorsal horn of a mouse spinal cord slice, and the effects of iberiotoxin, a BK channel blocker, on sEPSCs were analyzed. The frequency of sEPSCs was significantly higher in the peripheral nerve-ligated neuropathic mice than in the sham-operated control mice, but the amplitude of sEPSCs was equivalent between the two groups. Iberiotoxin increased the frequency of sEPSCs in the control mice to the same level as that in the neuropathic mice without affecting the amplitude of sEPSCs. In contrast, iberiotoxin did not show any significant effects on the sEPSCs in the neuropathic mice. These findings suggest that the BK channels that are located in presynaptic terminals control synaptic transmission in the superficial dorsal horn, and that functional downregulation of BK channels accompanies the neuropathic pain induced by peripheral nerve injury. This downregulation was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis of the BK channel alpha subunit. Taken together, our present results indicate that BK channels play crucial roles in the synaptic transmission of nociceptive information in the superficial dorsal horn.
European Journal of Neuroscience | 2007
Toshifumi Takasusuki; Tomonori Fujiwara; Shigeki Yamaguchi; Teruyuki Fukushima; Kimio Akagawa; Yuuichi Hori
Our previous analysis of HPC‐1/syntaxin 1A knockout (KO) mice indicated that HPC‐1/syntaxin 1A plays an important role in the synaptic plasticity of the hippocampus in vitro and learning behaviour in vivo. In order to gain further insights into the physiological functions of HPC‐1/syntaxin 1A, we studied the changes in the plasticity of synaptic transmission in the superficial dorsal horn of the spinal cord following a peripheral nerve injury in HPC‐1/syntaxin 1A KO and wild‐type (WT) mice. The von Frey filament test revealed that partial ligation of the sciatic nerve caused neuropathic pain in both WT and KO mice. However, KO mice showed significant enhancement of mechanical allodynia as compared with WT mice. Tight‐seal whole‐cell recordings were obtained from neurons in the superficial dorsal horn of the spinal cord slices. Electrical stimulus‐evoked excitatory postsynaptic currents (EPSCs), asynchronous EPSCs (aEPSCs) in the presence of strontium, and spontaneously occurring miniature EPSCs (mEPSCs) were analysed. Prior to peripheral nerve ligation, no significant differences were observed in the properties of evoked EPSCs, aEPSCs and mEPSCs in KO and WT mice. Seven−14 days after partial ligation, the amplitude of evoked EPSCs and the frequency of aEPSCs and mEPSCs in KO mice were significantly greater than those in WT mice; however, the amplitude of aEPSCs and mEPSCs remained unchanged in both groups. Enhanced allodynia behaviour and significant enhancement of excitatory synaptic transmission following peripheral nerve ligation in KO mice suggest that HPC‐1/syntaxin 1A might play a role in synaptic plasticity in the nociceptive pathway.
Anesthesiology | 2013
Toshifumi Takasusuki; Shigeki Yamaguchi; Shinsuke Hamaguchi; Tony L. Yaksh
Background:The authors examined in vivo the effects of general anesthetics on evoked substance P release (primary afferent excitability) and c-Fos expression (neuronal activation) in superficial dorsal horn. Methods:Rats received saline, propofol (100 mg/kg), pentobarbital (50 mg/kg), isoflurane (2 minimum alveolar concentration), nitrous oxide (66%), or fentanyl (30 &mgr;g/kg). During anesthesia, rats received intraplantar 5% formalin (50 &mgr;l) to left hind paw. Ten minutes later, rats underwent transcardial perfusion with 4% paraformaldehyde. Substance P release from small primary afferents was assessed by incidence of neurokinin 1 receptor internalization in the superficial dorsal horn. In separate studies, rats were sacrificed after 2 h and c-Fos expression measured. Results:Intraplantar formalin-induced robust neurokinin 1 receptor internalization in ipsilateral dorsal horn (ipsilateral: 54 ± 6% [mean ± SEM], contralateral: 12 ± 2%; P < 0.05; n = 4). Fentanyl, but not propofol, pentobarbital, isoflurane, nor nitrous oxide alone inhibited neurokinin 1 receptor internalization. However, 2 minimum alveolar concentration isoflurane + nitrous oxide reduced neurokinin 1 receptor internalization (27 ± 3%; P < 0.05; n = 5). All agents reduced c-Fos expression (control: 34 ± 4, fentanyl: 8 ± 2, isoflurane: 12 ± 3, nitrous oxide: 11 ± 2, isoflurane + nitrous oxide: 12 ± 1, pentobarbital: 11 ± 2, propofol: 13 ± 3; P < 0.05; n = 3). Conclusion:General anesthetics at anesthetic concentrations block spinal neuron activation through a mechanism that is independent of an effect on small primary afferent peptide release. The effect of fentanyl alone and the synergistic effect of isoflurane and nitrous oxide on substance P release suggest a correlative rationale for the therapeutic use of these anesthetic protocols by blocking nociceptive afferent transmitter release and preventing the initiation of cascade, which is immediately postsynaptic to the primary afferent.
Neuroscience | 2011
Teruyuki Fukushima; Toshifumi Takasusuki; Hideyuki Tomitori; Yuuichi Hori
Syntaxin 1A is a membrane protein playing an integral role in exocytosis and membrane trafficking. The superficial dorsal horn (SDH) of the spinal cord, where nociceptive synaptic transmission is modulated, is rich in this protein. We recently reported that peripheral nerve ligation-induced nociceptive responses are considerably enhanced in syntaxin 1A-knockout mice [Takasusuki T, Fujiwara T, Yamaguchi S, Fukushima T, Akagawa K, Hori Y (2007) Eur J Neurosci 26:2179-2187]. On the basis of this earlier finding, we hypothesized that syntaxin 1A is involved in peripheral nerve injury-induced nociceptive plasticity. In this study, we examined this hypothesis by using nociceptive behavioral studies and tight-seal whole-cell recordings from neurons in the SDH of adult mouse spinal cord slices. Partial sciatic nerve ligation (PSNL) in adult male Institute of Cancer Research (ICR) mice increased the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). The amplitude of the mEPSCs did not exhibit any changes, suggesting that peripheral nerve injury is associated with increased synaptic release of excitatory neurotransmitters. Western blot and real-time quantitative reverse transcription-polymerase chain reaction analyses revealed that PSNL gradually decreased the expression level of syntaxin 1A in the spinal SDH. This downregulation of syntaxin 1A took several days to develop, whereas behavioral allodynia developed within one day after PSNL. Syntaxin 1A knockdown by intrathecal injection of an antisense oligodeoxynucleotide against the syntaxin 1A gene led to the gradual development of allodynia. These results indicate a possible involvement of syntaxin 1A downregulation in the late maintenance phase of peripheral nerve injury-induced allodynia. In addition, syntaxin 1A knockdown by ribonucleic acid interference enhanced the axonal elongation and sprouting of spinal dorsal horn neurons in culture, suggesting that PSNL-induced syntaxin 1A downregulation may result in the rearrangement of the synaptic connections between neurons in the spinal dorsal horn. Taken together, it is possible to conclude that syntaxin 1A might be involved in spinal nociceptive plasticity induced by peripheral nerve injury.
The Korean Journal of Pain | 2018
Masahide Fujita; Taeko Fukuda; Yasuhiro Sato; Toshifumi Takasusuki; Makoto Tanaka
Background To identify a new strategy for postoperative pain management, we investigated the analgesic effects of allopregnanolone (Allo) in an incisional pain model, and also assessed its effects on the activities of the primary afferent fibers at the dorsal horn. Methods In experiment 1, 45 rats were assigned to Control, Allo small-dose (0.16 mg/kg), and Allo large-dose (1.6 mg/kg) groups (n = 15 in each). The weight bearing and mechanical withdrawal thresholds of the hind limb were measured before and at 2, 24, 48, and 168 h after Brennans surgery. In experiment 2, 16 rats were assigned to Control and Allo (0.16 mg/kg) groups (n = 8 in each). The degree of spontaneous pain was measured using the grimace scale after the surgery. Activities of the primary afferent fibers in the spinal cord (L6) were evaluated using immunohistochemical staining. Results In experiment 1, the withdrawal threshold of the Allo small-dose group was significantly higher than that of the Control group at 2 h after surgery. Intergroup differences in weight bearing were not significant. In experiment 2, intergroup differences in the grimace scale scores were not significant. Substance P release in the Allo (0.16 mg/kg) group was significantly lower than that in the Control group. Conclusions Systemic administration of Allo inhibited mechanical allodynia and activities of the primary afferent fibers at the dorsal horn in a rat postoperative pain model. Allo was proposed as a candidate for postoperative pain management.