Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiharu Tanaka is active.

Publication


Featured researches published by Toshiharu Tanaka.


Annual Review of Entomology | 2013

Intrinsic Inter- and Intraspecific Competition in Parasitoid Wasps

Jeffrey A. Harvey; Erik H. Poelman; Toshiharu Tanaka

Immature development of parasitoid wasps is restricted to resources found in a single host that is often similar in size to the adult parasitoid. When two or more parasitoids of the same or different species attack the same host, there is competition for monopolization of host resources. The success of intrinsic competition differs between parasitoids attacking growing hosts and parasitoids attacking paralyzed hosts. Furthermore, the evolution of gregarious development in parasitoids reflects differences in various developmental and behavioral traits, as these influence antagonistic encounters among immature parasitoids. Fitness-related costs (or benefits) of competition for the winning parasitoid reveal that time lags between successive attacks influence the outcome of competition. Physiological mechanisms used to exclude competitors include physical and biochemical factors that originate with the ovipositing female wasp or her progeny. In a broader multitrophic framework, indirect factors, such as plant quality, may affect parasitoids through effects on immunity and nutrition.


Insect Biochemistry and Molecular Biology | 2011

Developmental profile and hormonal regulation of the transcription factors broad and Krüppel homolog 1 in hemimetabolous thrips.

Chieka Minakuchi; Miho Tanaka; Ken Miura; Toshiharu Tanaka

In holometabolous insects, Krüppel homolog 1 (Kr-h1) and broad (br) are key players in the juvenile hormone (JH) regulation of metamorphosis: Kr-h1 is an early JH-response gene, while br is a transcription factor that directs pupal development. Thrips (Thysanoptera) are classified as hemimetabolous insects that develop directly from nymph to adult, but they have quiescent and non-feeding stages called propupa and pupa. We analyzed the developmental profiles of br and Kr-h1 in the western flower thrips Frankliniella occidentalis (Thripidae) that has one propupal instar and one pupal instar, and Haplothrips brevitubus (Phlaeothripidae) that has one propupal instar and two pupal instars, i.e. pupa I and pupa II. In F. occidentalis, the br mRNA levels were moderate in the embryonic stage, high at the larva-propupa transition, and low in the pre-final larval instar and the pupal stage, while Kr-h1 mRNA levels were high in the embryonic stage, remained at a moderate level in the larval and propupal stages, and low in the pupal stage. The expression profiles in H. brevitubus were very similar to those in F. occidentalis, except that the increase of br expression in the final larval stage occurs more slowly in H. brevitubus, and that the mRNA levels of br and Kr-h1 remained high in pupa I of H. brevitubus and then decreased. These profiles of br and Kr-h1 were comparable to those in holometabolous insects, although br expression found in thrips embryogenesis is reminiscent of several hemimetabolous species. Treatment with an exogenous JH mimic (JHM) in distinct developmental stages consistently resulted in lethality as pupa of F. occidentalis or pupa II of H. brevitubus. Treatment with JHM to newly molted propupae caused prolonged expression of Kr-h1 and br in both species, suggesting that Kr-h1 and br could be involved in mediating anti-metamorphic signals of JHM.


Results in Immunology | 2012

Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum

Kakeru Yokoi; Hiroaki Koyama; Chieka Minakuchi; Toshiharu Tanaka; Ken Miura

Using Tribolium castaneum, we quantitatively investigated the induction of nine antimicrobial peptide (AMP) genes by live gram-negative bacteria (Escherichia coli and Enterobacter cloacae), gram-positive bacteria (Micrococcus luteus and Bacillus subtilis) and the budding yeast (Saccharomyces cerevisiae). Then, five representative AMP genes were selected, and the involvement of the Toll and IMD pathways in their induction by E. coli, M. luteus and S. cerevisiae was examined by utilizing RNA interference of either MyD88 or IMD. Results indicated: Robust and acute induction of three genes by the two bacterial species was mediated mainly by the IMD pathway; slow and sustained induction of one gene by the two bacteria was mediated mainly by the Toll pathway; induction of the remaining one gene by the two bacteria was mediated by both pathways; induction of the five genes by the yeast was mediated by the Toll and/or IMD pathways depending on respective genes. These results suggest that more promiscuous activation and usage of the two pathways may occur in T. castaneum than in Drosophila melanogaster. In addition, the IMD pathway was revealed to dominantly contribute to defense against two bacterial species, gram-negative E. cloacae and gram-positive B. subtilis that possesses DAP-type peptidoglycan.


Ecological Entomology | 2012

Intrinsic competition among solitary and gregarious endoparasitoid wasps and the phenomenon of ‘resource sharing’

Peter M. Magdaraog; Jeffrey A. Harvey; Toshiharu Tanaka; Rieta Gols

1. Intrinsic competition was compared in three species of braconid wasps, the solitary Meteorus pulchricornis Wesmael, and the gregarious Cotesia kariyai (Watanabe) and Cotesia ruficrus Haliday in caterpillars of their common host, the armyworm Mythimna separata Walker. Competition was determined in pair‐wise contests consisting of simultaneous and subsequent parasitisms at various time intervals between the first and second attacks (<1, 24, 48, 72, and 96 h).


Developmental and Comparative Immunology | 2012

Involvement of NF-κB transcription factors in antimicrobial peptide gene induction in the red flour beetle, Tribolium castaneum

Kakeru Yokoi; Hiroaki Koyama; Wataru Ito; Chieka Minakuchi; Toshiharu Tanaka; Ken Miura

We previously demonstrated that Tribolium castaneum antimicrobical peptide (AMP) genes can be classified to IMD-dependent group I, Toll-dependent group III and co-dependent group II genes besides non-inducible group IV. Here, we focused on NF-κB transcription factor genes, Dif1, Dif2 and Rel, and examined their functions in AMP gene induction as well as linkages to the Toll or IMD pathway. IMD-dependent group I and Toll-dependent group III genes were revealed to be Rel- and Dif-dependent respectively through knockdown experiments, indicating that the pathway specificity of NF-κB classes found in Drosophila is also conserved in T. castaneum. The Toll-Dif and IMD-Rel pathways of T. castaneum were activated concomitantly by single microbe species, which may represent a distinctive feature of its immune responses. In addition, Rel knockdown impaired host defense against two model bacterial pathogens. Finally, potential κB motifs were searched in the regulatory regions of AMP genes, and relevance to respective NF-κB transcription factors was discussed.


Insect Biochemistry and Molecular Biology | 2014

Duplication of acetylcholinesterase gene in diamondback moth strains with different sensitivities to acephate

Shoji Sonoda; Xueyan Shi; Dunlun Song; Pei Liang; Xiwu Gao; Youjun Zhang; Jianhong Li; Yong Liu; Ming Li; Masaya Matsumura; Sachiyo Sanada-Morimura; Chieka Minakuchi; Toshiharu Tanaka; Tadashi Miyata

This study examined the acetylcholinesterase 1 gene (AChE1) in Plutella xylostella strains with different sensitivities to acephate. Multiple haplotypes of the gene were found in the field-collected strains including distinct haplotypes carrying one or both previously reported mutations (A298S and G324A). Moreover, sequencing results indicated the presence of duplicated copies of the gene in the field-collected strains. No correlation was found between copy numbers of AChE1 and levels of resistance to acephate suggesting that extensive AChE1 duplication is not a major resistance factor at least in some P. xylostella strains. Proportions of the A298S and G324A mutations showed no correlation with levels of resistance to acephate. This suggests that acephate resistance of P. xylostella is complex and cannot be evaluated based on the AChE1 copy number or proportions of the resistance mutations alone.


Biocontrol | 2013

Inter- and intra-specific host discrimination in gregarious and solitary endoparasitoid wasps

Peter M. Magdaraog; Toshiharu Tanaka; Jeffrey A. Harvey

In nature, most species of Lepidoptera are attacked by parasitoids, and some species may be hosts for several parasitoid species. When hosts are parasitized by more than one female of the same species (=superparasitism) or females of different species (=multiparasitism), then intrinsic competition occurs for control of host resources. To reduce competition, some parasitoids are able to recognize the difference between parasitized and unparasitized hosts. Inter- and intra-specific host discrimination were investigated in the two sympatric species, the gregarious Cotesia kariyai (Watanabe) and solitary Meteorus pulchricornis (Wesmael), endoparasitoids of the Oriental armyworm Mythimna separata (Walker). To measure host discrimination, choice experiments were conducted in which females of both species foraged and chose between healthy host larvae and hosts initially parasitized by either C. kariyai or M. pulchricornis. An olfactory test was also performed to examine the discrimination behavior of the two parasitoids. Our results showed that, in oviposition choice tests, both braconid female wasps were able to discriminate between unparasitized hosts and from four to sevenxa0day-old hosts previously attacked by conspecific and heterospecific wasps. On the other hand, superparasitism and multiparasitism occurred even in host larvae that were parasitized twoxa0days earlier. However, once the immature parasitoids hosts are at larval stage (1st and 2nd instar), super- and multiparasitism were avoided in the two-choice test, but the latter often occurred in the multiple-choice experiment. Host discrimination abilities may have been based on plant volatile signals incurred from damaged plants and internal mechanisms from four to seven post-parasitized hosts.


Archives of Insect Biochemistry and Physiology | 2016

WASP-ASSOCIATED FACTORS ACT IN INTERSPECIES COMPETITION DURING MULTIPARASITISM

Peter M. Magdaraog; Toshiharu Tanaka; Jeffrey A. Harvey

Coexistence or displacement of parasitoids in hosts during intrinsic competitive interactions between different parasitoid species (multiparasitism) may depend on their life history traits and behavior. Intense competition for possession of hosts may lead to the elimination of the inferior competitor through physical attack and/or physiological suppression. However, the mechanisms of physiological suppression during multiparasitism remain unclear. Previous work has shown that first instar larvae of the solitary endoparasitoid Meteorus pulchricornis possess well-developed mandibles that are used to kill competitors. Two gregarious endoparasitoids, Cotesia kariyai and C. rufricus, share host resources especially when the time gap of oviposition is short. Here, we investigated the physiological influence of wasp-regulatory factors of the three endoparasitoids, M. pulchricornis, C. kariyai, and C. ruficrus, in their common host Mythimna separata. We found that MpVLP alone (or with venom) deleteriously affected the development of the two gregarious species. Similarly, CkPDV plus venom had toxic effect on M. pulchricornis eggs and immature larvae, although they were not harmful to immature stages of C. ruficrus. Cotesia kariyai and C. ruficrus were able to coexist mainly through the expression of regulatory factors and both could successfully emerge from a multiparasitized host. The injection of CkPDV plus venom after oviposition in L5 host larvae facilitated C. ruficrus development and increased the rate of successful parasitism from 9% to 62%. This suggests that the two gregarious parasitoid wasps exhibit strong phylogenetic affinity, favoring their coexistence and success in multiparasitized hosts.


Annals of The Entomological Society of America | 2011

Differing Success of Defense Strategies in Two Parasitoid Wasps in Protecting their Pupae Against a Secondary Hyperparasitoid

Jeffrey A. Harvey; Rieta Gols; Toshiharu Tanaka

ABSTRACT n During their larval development, endoparasitoids are known to dispose of host resources in several different ways. Some parasitoid wasps consume most or all tissues of the host, whereas others consume a small fraction of host resources and either ensure that the host moves away from the pupation site or allow the host to remain close to the parasitoid cocoon(s). Using a single host species, Mythimna separata Walker (Lepidoptera: Noctuidae), this study compares the success of the two pupation strategies in the solitary parasitoids Microplitis sp. and Meteorus pulchricornis Wesmael (Hymenoptera: Braconidae) against attack from a secondary hyperparasitoid, Gelis agilis F. (Hymenoptera: Ichneumonidae). The caudal appendages of M. separata caterpillars parasitized by Microplitis sp. remain physically attached to parasitoid cocoons and the caterpillars behave aggressively when disturbed. However, after Me. pulchricornis larvae emerge from caterpillars of their host, M. separata, the parasitoid larvae pupate in cocoons that are suspended by a single thick thread that hangs 1–2 cm from under a leaf. In choice tests conducted in petri dishes, significantly fewer cocoons of Microplitis sp. attended by caterpillars than unattended cocoons were hyperparasitized by G. agilis. By contrast, Me. pulchricornis cocoons that were hanging from corn, Zea mays L., plants were hyperparasitized as frequently as those which were attached to leaves. We discuss the potentially different selection pressures generated among natural enemies such as predators and hyperparasitoids in determining optimal pupal defense strategies in primary parasitoids.


PLOS ONE | 2016

Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism.

Isabelle Mifom Vea; Sayumi Tanaka; Takahiro Shiotsuki; Akiya Jouraku; Toshiharu Tanaka; Chieka Minakuchi

Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.

Collaboration


Dive into the Toshiharu Tanaka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rieta Gols

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dunlun Song

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge