Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshihide Shikanai is active.

Publication


Featured researches published by Toshihide Shikanai.


Glycobiology | 2008

Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins

Hiroaki Tateno; Atsushi Mori; Noboru Uchiyama; Rikio Yabe; Jun Iwaki; Toshihide Shikanai; Takashi Angata; Hisashi Narimatsu; Jun Hirabayashi

The extensive involvement of glycan-binding proteins (GBPs) as regulators in diverse biological phenomena provides a fundamental reason to investigate their glycan-binding specificities. Here, we developed a glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of GBPs. Eighty-nine selected multivalent glycoconjugates comprising natural glycoproteins, neo-glycoproteins, and polyacrylamide (PAA)-conjugated glycan epitopes were immobilized on an epoxy-activated glass slide. The GBP binding was monitored by an evanescent-field fluorescence-assisted scanner at equilibrium without washing steps. The detection principle also allows direct application of unpurified GBPs with the aid of specific antibodies. Model experiments using plant lectins (RCA120, ConA, and SNA), galectins (3 and 8), a C-type lectin (DC-SIGN) and a siglec (CD22) provided data consistent with previous work within 4 h using less than 40 ng of GBPs per analysis. As an application, serum profiling of antiglycan antibodies (IgG and IgM) was performed with Cy3-labeled secondary antibodies. Moreover, novel carbohydrate-binding ability was demonstrated for a human IL-18 binding protein. Thus, the developed glycan array is useful for investigation of various types of GBPs, with the added advantage of wash-free analysis.


Journal of Biological Chemistry | 2007

Klotho-related Protein Is a Novel Cytosolic Neutral β-Glycosylceramidase

Yasuhiro Hayashi; Nozomu Okino; Yoshimitsu Kakuta; Toshihide Shikanai; Motohiro Tani; Hisashi Narimatsu; Makoto Ito

Using C6-NBD-glucosylceramide (GlcCer) as a substrate, we detected the activity of a conduritol B epoxide-insensitive neutral glycosylceramidase in cytosolic fractions of zebrafish embryos, mouse and rat brains, and human fibroblasts. The candidates for the enzyme were assigned to the Klotho (KL), whose family members share a β-glucosidase-like domain but whose natural substrates are unknown. Among this family, only the KL-related protein (KLrP) is capable of degrading C6-NBD-GlcCer when expressed in CHOP cells, in which Myc-tagged KLrP was exclusively distributed in the cytosol. In addition, knockdown of the endogenous KLrP by small interfering RNA increased the cellular level of GlcCer. The purified recombinant KLrP hydrolyzed 4-methylumbelliferyl-glucose, C6-NBD-GlcCer, and authentic GlcCer at pH 6.0. The enzyme also hydrolyzed the corresponding galactosyl derivatives, but each kcat/Km was much lower than that for glucosyl derivatives. The x-ray structure of KLrP at 1.6Å resolution revealed that KLrP is a (β/α)8 TIM barrel, in which Glu165 and Glu373 at the carboxyl termini of β-strands 4 and 7 could function as an acid/base catalyst and nucleophile, respectively. The substrate-binding cleft of the enzyme was occupied with palmitic acid and oleic acid when the recombinant protein was crystallized in a complex with glucose. GlcCer was found to fit well the cleft of the crystal structure of KLrP. Collectively, KLrP was identified as a cytosolic neutral glycosylceramidase that could be involved in a novel nonlysosomal catabolic pathway of GlcCer.


Journal of Proteome Research | 2012

Large-scale Identification of N-Glycosylated Proteins of Mouse Tissues and Construction of a Glycoprotein Database, GlycoProtDB

Hiroyuki Kaji; Toshihide Shikanai; Akiko Sasaki-Sawa; Hongling Wen; Mika Fujita; Yoshinori Suzuki; Daisuke Sugahara; Hiromichi Sawaki; Yoshio Yamauchi; Takashi Shinkawa; Masato Taoka; Nobuhiro Takahashi; Toshiaki Isobe; Hisashi Narimatsu

Protein glycosylation is a common post-translational modification that plays important roles in terms of protein function. However, analyzing the relationship between glycosylation and protein function remains technically challenging. This problem arises from the fact that the attached glycans possess diverse and heterogeneous structures. We believe that the first step to elucidate glycan function is to systematically determine the status of protein glycosylation under physiological conditions. Such studies involve analyzing differences in glycan structure on cell type (tissue), sex, and age, as well as changes associated with perturbations as a result of gene knockout of glycan biosynthesis-related enzyme, disease and drug treatment. Therefore, we analyzed a series of glycoproteomes in several mouse tissues to identify glycosylated proteins and their glycosylation sites. Comprehensive analysis was performed by lectin- or HILIC-capture of glycopeptide subsets followed by enzymatic deglycosylation in stable isotope-labeled water (H₂¹⁸O, IGOT) and finally LC-MS analyses. In total, 5060 peptides derived from 2556 glycoproteins were identified. We then constructed a glycoprotein database, GlycoProtDB, using our experimental-based information to facilitate future studies in glycobiology.


Bioinformatics | 2005

The carbohydrate sequence markup language (CabosML): an XML description of carbohydrate structures

Norihiro Kikuchi; Akihiko Kameyama; Shuuichi Nakaya; Hiromi Ito; Takashi Sato; Toshihide Shikanai; Yoriko Takahashi; Hisashi Narimatsu

UNLABELLED Bioinformatics resources for glycomics are very poor as compared with those for genomics and proteomics. The complexity of carbohydrate sequences makes it difficult to define a common language to represent them, and the development of bioinformatics tools for glycomics has not progressed. In this study, we developed a carbohydrate sequence markup language (CabosML), an XML description of carbohydrate structures. AVAILABILITY The language definition (XML Schema) and an experimental database of carbohydrate structures using an XML database management system are available at http://www.phoenix.hydra.mki.co.jp/CabosDemo.html CONTACT [email protected].


Nucleic Acids Research | 2016

GlyTouCan 1.0 – The international glycan structure repository

Kiyoko F. Aoki-Kinoshita; Sanjay Agravat; Nobuyuki P. Aoki; Sena Arpinar; Richard D. Cummings; Akihiro Fujita; Noriaki Fujita; Gerald Hart; Stuart M. Haslam; Toshisuke Kawasaki; Masaaki Matsubara; Kelley W. Moreman; Shujiro Okuda; Michael Pierce; René Ranzinger; Toshihide Shikanai; Daisuke Shinmachi; Elena Solovieva; Yoshinori Suzuki; Shinichiro Tsuchiya; Issaku Yamada; William S. York; Joseph Zaia; Hisashi Narimatsu

Glycans are known as the third major class of biopolymers, next to DNA and proteins. They cover the surfaces of many cells, serving as the ‘face’ of cells, whereby other biomolecules and viruses interact. The structure of glycans, however, differs greatly from DNA and proteins in that they are branched, as opposed to linear sequences of amino acids or nucleotides. Therefore, the storage of glycan information in databases, let alone their curation, has been a difficult problem. This has caused many duplicated efforts when integration is attempted between different databases, making an international repository for glycan structures, where unique accession numbers are assigned to every identified glycan structure, necessary. As such, an international team of developers and glycobiologists have collaborated to develop this repository, called GlyTouCan and is available at http://glytoucan.org/, to provide a centralized resource for depositing glycan structures, compositions and topologies, and to retrieve accession numbers for each of these registered entries. This will thus enable researchers to reference glycan structures simply by accession number, as opposed to by chemical structure, which has been a burden to integrate glycomics databases in the past.


Journal of Biomedical Semantics | 2013

Introducing glycomics data into the Semantic Web

Kiyoko F. Aoki-Kinoshita; Jerven T. Bolleman; Matthew Campbell; Shin Kawano; Jin-Dong Kim; Thomas Lütteke; Masaaki Matsubara; Shujiro Okuda; René Ranzinger; Hiromichi Sawaki; Toshihide Shikanai; Daisuke Shinmachi; Yoshinori Suzuki; Philip V. Toukach; Issaku Yamada; Nicolle H. Packer; Hisashi Narimatsu

BackgroundGlycoscience is a research field focusing on complex carbohydrates (otherwise known as glycans)a, which can, for example, serve as “switches” that toggle between different functions of a glycoprotein or glycolipid. Due to the advancement of glycomics technologies that are used to characterize glycan structures, many glycomics databases are now publicly available and provide useful information for glycoscience research. However, these databases have almost no link to other life science databases.ResultsIn order to implement support for the Semantic Web most efficiently for glycomics research, the developers of major glycomics databases agreed on a minimal standard for representing glycan structure and annotation information using RDF (Resource Description Framework). Moreover, all of the participants implemented this standard prototype and generated preliminary RDF versions of their data. To test the utility of the converted data, all of the data sets were uploaded into a Virtuoso triple store, and several SPARQL queries were tested as “proofs-of-concept” to illustrate the utility of the Semantic Web in querying across databases which were originally difficult to implement.ConclusionsWe were able to successfully retrieve information by linking UniCarbKB, GlycomeDB and JCGGDB in a single SPARQL query to obtain our target information. We also tested queries linking UniProt with GlycoEpitope as well as lectin data with GlycomeDB through PDB. As a result, we have been able to link proteomics data with glycomics data through the implementation of Semantic Web technologies, allowing for more flexible queries across these domains.


Journal of Proteomics | 2013

Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma

Atsushi Matsuda; Atsushi Kuno; Hideki Matsuzaki; Toru Kawamoto; Toshihide Shikanai; Yasuni Nakanuma; Masakazu Yamamoto; Nobuhiro Ohkohchi; Yuzuru Ikehara; Junichi Shoda; Jun Hirabayashi; Hisashi Narimatsu

UNLABELLED Cholangiocarcinoma (CC) is a lethal malignancy because it exhibits asymptomatic growth infiltrating the surrounding structures and therefore is usually detected at an advanced stage. The mainstay of treatment for CC is complete resection with negative surgical margins. Therefore, its diagnosis at a relatively early stage is demanded for performing relevant surgical resection. Since the definitive CC diagnosis depends on invasive methods such as biliary cytology and biopsy, a noninvasive assay with high diagnostic accuracy is keenly required. We therefore developed a CC marker with high specificity by the Wisteria floribunda agglutinin (WFA)-assisted glycoproteomics approach. WFA-positive glycoproteins were enriched by the direct dissection of the WFA-stained CC tissue region and following WFA-agarose column chromatography. Subsequent analysis by mass spectrometry identified 71 proteins as candidate markers. Screening of these candidates by gene expression profiling and immunohistochemistry resulted in the selection of L1 cell adhesion molecule (L1CAM) as the most specific CC marker. We confirmed the importance of WFA-positivity for L1CAM using both bile and serum of CC and benign bile duct disease patients. Specifically, WFA-positive L1CAM was enriched from serum by the WFA-assisted affinity capturing, with which CC was efficiently distinguished from benign. In the primary verification study using bile from CC patients (n=29) and that of benign bile duct disease (n=29), WFA-positive L1CAM distinguished CC with high specificity (sensitivity=0.66, specificity=0.93, overall accuracy=0.79, area under the receiver operating curve [AUC]=0.82). The combined use of the WFA-positive L1CAM assay with the high sensitive assay detecting WFA-positive sialylated mucin 1 sufficiently improved the diagnostic accuracy of CC (overall accuracy=0.84, AUC=0.93). This combination will possibly be a precise procedure for CC diagnosis compared with conventional diagnostic techniques. BIOLOGICAL SIGNIFICANCE In this study, we constructed the system for verification of the candidate molecules that exhibit disease specific glyco-alterations and discovered a useful CC marker by the glycoproteomics-assisted strategy for biomarker discovery. Based on the strategy, we previously found that WFA is the best probe to detect CC-specific glycosylation and WFA-positive sialyl MUC1 as a possible biomarker candidate. While the diagnostic specificity of WFA-positive sialyl MUC1 was not superb, we proposed a new biomarker candidate WFA-positive L1CAM with high specificity in bile and serum to complement the previous one. We proved that the novel combination assay of WFA-L1CAM and WFA-sialyl MUC1 selected based on our strategy has the possibility to become a reliable serological test. This study represents application of our strategy, which can be extrapolated to discovery of marker candidates for other diseases.


Bioinformatics | 2015

GlycoRDF: an ontology to standardize glycomics data in RDF

René Ranzinger; Kiyoko F. Aoki-Kinoshita; Matthew Campbell; Shin Kawano; Thomas Lütteke; Shujiro Okuda; Daisuke Shinmachi; Toshihide Shikanai; Hiromichi Sawaki; Philip V. Toukach; Masaaki Matsubara; Issaku Yamada; Hisashi Narimatsu

MOTIVATION Over the last decades several glycomics-based bioinformatics resources and databases have been created and released to the public. Unfortunately, there is no common standard in the representation of the stored information or a common machine-readable interface allowing bioinformatics groups to easily extract and cross-reference the stored information. RESULTS An international group of bioinformatics experts in the field of glycomics have worked together to create a standard Resource Description Framework (RDF) representation for glycomics data, focused on glycan sequences and related biological source, publications and experimental data. This RDF standard is defined by the GlycoRDF ontology and will be used by database providers to generate common machine-readable exports of the data stored in their databases. AVAILABILITY AND IMPLEMENTATION The ontology, supporting documentation and source code used by database providers to generate standardized RDF are available online (http://www.glycoinfo.org/GlycoRDF/).


Journal of Chemical Information and Modeling | 2014

WURCS: The Web3 Unique Representation of Carbohydrate Structures

Ken-ichi Tanaka; Kiyoko F. Aoki-Kinoshita; Masaaki Kotera; Hiromichi Sawaki; Shinichiro Tsuchiya; Noriaki Fujita; Toshihide Shikanai; Masaki Kato; Shin Kawano; Issaku Yamada; Hisashi Narimatsu

In recent years, the Semantic Web has become the focus of life science database development as a means to link life science data in an effective and efficient manner. In order for carbohydrate data to be applied to this new technology, there are two requirements for carbohydrate data representations: (1) a linear notation which can be used as a URI (Uniform Resource Identifier) if needed and (2) a unique notation such that any published glycan structure can be represented distinctively. This latter requirement includes the possible representation of nonstandard monosaccharide units as a part of the glycan structure, as well as compositions, repeating units, and ambiguous structures where linkages/linkage positions are unidentified. Therefore, we have developed the Web3 Unique Representation of Carbohydrate Structures (WURCS) as a new linear notation for representing carbohydrates for the Semantic Web.


Methods of Molecular Biology | 2015

JCGGDB: Japan Consortium for Glycobiology and Glycotechnology Database

Masako Maeda; Noriaki Fujita; Yoshinori Suzuki; Hiromichi Sawaki; Toshihide Shikanai; Hisashi Narimatsu

The biological significance of glycans has been widely studied and reported in the past. However, most achievements of our predecessors are not readily available in existing databases. JCGGDB is a meta-database involving 15 original databases in AIST and 5 cooperative databases in alliance with JCGG: Japan Consortium for Glycobiology and Glycotechnology. It centers on a glycan structure database and accumulates information such as glycan preferences of lectins, glycosylation sites in proteins, and genes related to glycan syntheses from glycoscience and related fields. This chapter illustrates how to use three major search interfaces (Keyword Search, Structure Search, and GlycoChem Explorer) available in JCGGDB to search across multiple databases.

Collaboration


Dive into the Toshihide Shikanai's collaboration.

Top Co-Authors

Avatar

Hisashi Narimatsu

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshinori Suzuki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hiromichi Sawaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Issaku Yamada

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Noriaki Fujita

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Akira Togayachi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jun Hirabayashi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaaki Matsubara

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge