Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshihide Ueno is active.

Publication


Featured researches published by Toshihide Ueno.


The New England Journal of Medicine | 2010

EML4-ALK Mutations in Lung Cancer That Confer Resistance to ALK Inhibitors

Young Lim Choi; Manabu Soda; Yoshihiro Yamashita; Toshihide Ueno; Junpei Takashima; Takahiro Nakajima; Yasushi Yatabe; Kengo Takeuchi; Toru Hamada; Hidenori Haruta; Yuichi Ishikawa; Hideki Kimura; Tetsuya Mitsudomi; Yoshiro Tanio; Hiroyuki Mano

The EML4 (echinoderm microtubule-associated protein-like 4)-ALK (anaplastic lymphoma kinase) fusion-type tyrosine kinase is an oncoprotein found in 4 to 5% of non-small-cell lung cancers, and clinical trials of specific inhibitors of ALK for the treatment of such tumors are currently under way. Here, we report the discovery of two secondary mutations within the kinase domain of EML4-ALK in tumor cells isolated from a patient during the relapse phase of treatment with an ALK inhibitor. Each mutation developed independently in subclones of the tumor and conferred marked resistance to two different ALK inhibitors. (Funded by the Ministry of Health, Labor, and Welfare of Japan, and others.).


Clinical Cancer Research | 2009

KIF5B-ALK, a Novel Fusion Oncokinase Identified by an Immunohistochemistry-based Diagnostic System for ALK-positive Lung Cancer

Kengo Takeuchi; Young Lim Choi; Yuki Togashi; Manabu Soda; Satoko Hatano; Kentaro Inamura; Shuji Takada; Toshihide Ueno; Yoshihiro Yamashita; Yukitoshi Satoh; Sakae Okumura; Ken Nakagawa; Yuichi Ishikawa; Hiroyuki Mano

Purpose: EML4-ALK is a transforming fusion tyrosine kinase, several isoforms of which have been identified in lung cancer. Immunohistochemical detection of EML4-ALK has proved difficult, however, likely as a result of low transcriptional activity conferred by the promoter-enhancer region of EML4. The sensitivity of EML4-ALK detection by immunohistochemistry should be increased adequately. Experimental Design: We developed an intercalated antibody-enhanced polymer (iAEP) method that incorporates an intercalating antibody between the primary antibody to ALK and the dextran polymer-based detection reagents. Results: Our iAEP method discriminated between tumors positive or negative for EML4-ALK in a test set of specimens. Four tumors were also found to be positive for ALK in an archive of lung adenocarcinoma (n = 130) and another 4 among fresh cases analyzed in a diagnostic laboratory. These 8 tumors were found to include 1 with EML4-ALK variant 1, 1 with variant 2, 3 with variant 3, and 2 with previously unidentified variants (designated variants 6 and 7). Inverse reverse transcription-PCR analysis revealed that the remaining tumor harbored a novel fusion in which intron 24 of KIF5B was ligated to intron 19 of ALK. Multiplex reverse transcription-PCR analysis of additional archival tumor specimens identified another case of lung adenocarcinoma positive for KIF5B-ALK. Conclusions: The iAEP method should prove suitable for immunohistochemical screening of tumors positive for ALK or ALK fusion proteins among pathologic archives. Coupling of PCR-based detection to the iAEP method should further facilitate the rapid identification of novel ALK fusion genes such as KIF5B-ALK.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A mouse model for EML4-ALK-positive lung cancer

Manabu Soda; Shuji Takada; Kengo Takeuchi; Young Lim Choi; Munehiro Enomoto; Toshihide Ueno; Hidenori Haruta; Toru Hamada; Yoshihiro Yamashita; Yuichi Ishikawa; Yukihiko Sugiyama; Hiroyuki Mano

EML4-ALK is a fusion-type protein tyrosine kinase that is generated in human non-small-cell lung cancer (NSCLC) as a result of a recurrent chromosome inversion, inv (2)(p21p23). Although mouse 3T3 fibroblasts expressing human EML4-ALK form transformed foci in culture and s.c. tumors in nude mice, it has remained unclear whether this fusion protein plays an essential role in the carcinogenesis of NSCLC. To address this issue, we have now established transgenic mouse lines that express EML4-ALK specifically in lung alveolar epithelial cells. All of the transgenic mice examined developed hundreds of adenocarcinoma nodules in both lungs within a few weeks after birth, confirming the potent oncogenic activity of the fusion kinase. Although such tumors underwent progressive enlargement in control animals, oral administration of a small-molecule inhibitor of the kinase activity of ALK resulted in their rapid disappearance. Similarly, whereas i.v. injection of 3T3 cells expressing EML4-ALK induced lethal respiratory failure in recipient nude mice, administration of the ALK inhibitor effectively cleared the tumor burden and improved the survival of such animals. These data together reinforce the pivotal role of EML4-ALK in the pathogenesis of NSCLC in humans, and they provide experimental support for the treatment of this intractable cancer with ALK inhibitors.


Cancer Research | 2008

Identification of Novel Isoforms of the EML4-ALK Transforming Gene in Non–Small Cell Lung Cancer

Young Lim Choi; Kengo Takeuchi; Manabu Soda; Kentaro Inamura; Yuki Togashi; Satoko Hatano; Munehiro Enomoto; Toru Hamada; Hidenori Haruta; Hideki Watanabe; Kentaro Kurashina; Hisashi Hatanaka; Toshihide Ueno; Shuji Takada; Yoshihiro Yamashita; Yukihiko Sugiyama; Yuichi Ishikawa; Hiroyuki Mano

The genome of a subset of non-small-cell lung cancers (NSCLC) harbors a small inversion within chromosome 2 that gives rise to a transforming fusion gene, EML4-ALK, which encodes an activated protein tyrosine kinase. Although breakpoints within EML4 have been identified in introns 13 and 20, giving rise to variants 1 and 2, respectively, of EML4-ALK, it has remained unclear whether other isoforms of the fusion gene are present in NSCLC cells. We have now screened NSCLC specimens for other in-frame fusion cDNAs that contain both EML4 and ALK sequences. Two slightly different fusion cDNAs in which exon 6 of EML4 was joined to exon 20 of ALK were each identified in two individuals of the cohort. Whereas one cDNA contained only exons 1 to 6 of EML4 (variant 3a), the other also contained an additional 33-bp sequence derived from intron 6 of EML4 (variant 3b). The protein encoded by the latter cDNA thus contained an insertion of 11 amino acids between the EML4 and ALK sequences of that encoded by the former. Both variants 3a and 3b of EML4-ALK exhibited marked transforming activity in vitro as well as oncogenic activity in vivo. A lung cancer cell line expressing endogenous variant 3 of EML4-ALK underwent cell death on exposure to a specific inhibitor of ALK catalytic activity. These data increase the frequency of EML4-ALK-positive NSCLC tumors and bolster the clinical relevance of this oncogenic kinase.


Oncogene | 2010

Array-based genomic resequencing of human leukemia

Yoshihiro Yamashita; Jin Yuan; Isao Suetake; Hiromu Suzuki; Yuichi Ishikawa; Young Lim Choi; Toshihide Ueno; Midori Soda; Toru Hamada; Hidenori Haruta; Satoru Takada; Yasushi Miyazaki; Hitoshi Kiyoi; Etsuro Ito; Tomoki Naoe; Masao Tomonaga; Minoru Toyota; Shoji Tajima; Atsushi Iwama; Hiroyuki Mano

To identify oncogenes in leukemias, we performed large-scale resequencing of the leukemia genome using DNA sequence arrays that determine ∼9 Mbp of sequence corresponding to the exons or exon–intron boundaries of 5648 protein-coding genes. Hybridization of genomic DNA from CD34-positive blasts of acute myeloid leukemia (n=19) or myeloproliferative disorder (n=1) with the arrays identified 9148 nonsynonymous nucleotide changes. Subsequent analysis showed that most of these changes were also present in the genomic DNA of the paired controls, with 11 somatic changes identified only in the leukemic blasts. One of these latter changes results in a Met-to-Ile substitution at amino-acid position 511 of Janus kinase 3 (JAK3), and the JAK3(M511I) protein exhibited transforming potential both in vitro and in vivo. Further screening for JAK3 mutations showed novel and known transforming changes in a total of 9 out of 286 cases of leukemia. Our experiments also showed a somatic change responsible for an Arg-to-His substitution at amino-acid position 882 of DNA methyltransferase 3A, which resulted in a loss of DNA methylation activity of >50%. Our data have thus shown a unique profile of gene mutations in human leukemia.


Molecular Cell | 2011

MCPIP1 Ribonuclease Antagonizes Dicer and Terminates MicroRNA Biogenesis through Precursor MicroRNA Degradation

Hiroshi I. Suzuki; Mayu Arase; Hironori Matsuyama; Young Lim Choi; Toshihide Ueno; Hiroyuki Mano; Koichi Sugimoto; Kohei Miyazono

MicroRNAs (miRNAs) are versatile regulators of gene expression and undergo complex maturation processes. However, the mechanism(s) stabilizing or reducing these small RNAs remains poorly understood. Here we identify mammalian immune regulator MCPIP1 (Zc3h12a) ribonuclease as a broad suppressor of miRNA activity and biogenesis, which counteracts Dicer, a central ribonuclease in miRNA processing. MCPIP1 suppresses miRNA biosynthesis via cleavage of the terminal loops of precursor miRNAs (pre-miRNAs). MCPIP1 also carries a vertebrate-specific oligomerization domain important for pre-miRNA recognition, indicating its recent evolution. Furthermore, we observed potential antagonism between MCPIP1 and Dicer function in human cancer and found a regulatory role of MCPIP1 in the signaling axis comprising miR-155 and its target c-Maf. These results collectively suggest that the balance between processing and destroying ribonucleases modulates miRNA biogenesis and potentially affects pathological miRNA dysregulation. The presence of this abortive processing machinery and diversity of MCPIP1-related genes may imply a dynamic evolutional transition of the RNA silencing system.


Clinical Cancer Research | 2012

A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer

Manabu Soda; Kazutoshi Isobe; Akira Inoue; Makoto Maemondo; Satoshi Oizumi; Yuka Fujita; Akihiko Gemma; Yoshihiro Yamashita; Toshihide Ueno; Kengo Takeuchi; Young Lim Choi; Hitoshi Miyazawa; Tomoaki Tanaka; Koichi Hagiwara; Hiroyuki Mano

Purpose: EML4-ALK is a lung cancer oncogene, and ALK inhibitors show marked therapeutic efficacy for tumors harboring this fusion gene. It remains unsettled, however, how the fusion gene should be detected in specimens other than formalin-fixed, paraffin-embedded tissue. We here tested whether reverse transcription PCR (RT-PCR)-based detection of EML4-ALK is a sensitive and reliable approach. Experimental Design: We developed a multiplex RT-PCR system to capture ALK fusion transcripts and applied this technique to our prospective, nationwide cohort of non–small cell lung cancer (NSCLC) in Japan. Results: During February to December 2009, we collected 916 specimens from 853 patients, quality filtering of which yielded 808 specimens of primary NSCLC from 754 individuals. Screening for EML4-ALK and KIF5B-ALK with our RT-PCR system identified EML4-ALK transcripts in 36 samples (4.46%) from 32 individuals (4.24%). The RT-PCR products were detected in specimens including bronchial washing fluid (n = 11), tumor biopsy (n = 8), resected tumor (n = 7), pleural effusion (n = 5), sputum (n = 4), and metastatic lymph node (n = 1). The results of RT-PCR were concordant with those of sensitive immunohistochemistry with ALK antibodies. Conclusions: Multiplex RT-PCR was confirmed to be a reliable technique for detection of ALK fusion transcripts. We propose that diagnostic tools for EML4-ALK should be selected in a manner dependent on the available specimen types. FISH and sensitive immunohistochemistry should be applied to formalin-fixed, paraffin-embedded tissue, but multiplex RT-PCR is appropriate for other specimen types. Clin Cancer Res; 18(20); 5682–9. ©2012 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Transforming mutations of RAC guanosine triphosphatases in human cancers

Masahito Kawazu; Toshihide Ueno; Kenji Kontani; Yoshitaka Ogita; Mizuo Ando; Kazutaka Fukumura; Azusa Yamato; Manabu Soda; Kengo Takeuchi; Yoshio Miki; Hiroyuki Yamaguchi; Takahiko Yasuda; Tomoki Naoe; Yoshihiro Yamashita; Toshiaki Katada; Young Lim Choi; Hiroyuki Mano

Members of the RAS superfamily of small guanosine triphosphatases (GTPases) transition between GDP-bound, inactive and GTP-bound, active states and thereby function as binary switches in the regulation of various cellular activities. Whereas HRAS, NRAS, and KRAS frequently acquire transforming missense mutations in human cancer, little is known of the oncogenic roles of other small GTPases, including Ras-related C3 botulinum toxin substrate (RAC) proteins. We show that the human sarcoma cell line HT1080 harbors both NRAS(Q61K) and RAC1(N92I) mutant proteins. Whereas both of these mutants were able to transform fibroblasts, knockdown experiments indicated that RAC1(N92I) may be the essential growth driver for this cell line. Screening for RAC1, RAC2, or RAC3 mutations in cell lines and public databases identified several missense mutations for RAC1 and RAC2, with some of the mutant proteins, including RAC1(P29S), RAC1(C157Y), RAC2(P29L), and RAC2(P29Q), being found to be activated and transforming. P29S, N92I, and C157Y mutants of RAC1 were shown to exist preferentially in the GTP-bound state as a result of a rapid transition from the GDP-bound state, rather than as a result of a reduced intrinsic GTPase activity. Activating mutations of RAC GTPases were thus found in a wide variety of human cancers at a low frequency; however, given their marked transforming ability, the mutant proteins are potential targets for the development of new therapeutic agents.


Cancer Science | 2008

Chromosome copy number analysis in screening for prognosis-related genomic regions in colorectal carcinoma

Kentaro Kurashina; Yoshihiro Yamashita; Toshihide Ueno; Koji Koinuma; Jun Ohashi; Hisanaga Horie; Yasuyuki Miyakura; Toru Hamada; Hidenori Haruta; Hisashi Hatanaka; Manabu Soda; Young Lim Choi; Shuji Takada; Yoshikazu Yasuda; Hideo Nagai; Hiroyuki Mano

Colorectal carcinoma (CRC) remains the major cause of cancer death in humans. Although chromosomal structural anomaly is presumed to play an important role in the carcinogenesis of CRC, chromosomal copy number alterations (CNA) and loss of heterozygosity (LOH) have not yet been analyzed extensively at high resolution in CRC. Here we aim to identify recurrent CNA and LOH in human CRC with the use of single nucleotide polymorphism‐typing microarrays, and to reveal their relevance to clinical outcome. Surgically resected CRC specimens and paired normal mucosa were obtained from a consecutive series of 94 patients with CRC, and both of them were subjected to genotyping with Affymetrix Mapping 50K arrays. CNA and LOH were inferred computationally on every single nucleotide polymorphism site by integrating the array data for paired specimens. Our large dataset reveals recurrent CNA in CRC at chromosomes 7, 8, 13, 18, and 20, and recurrent LOH at chromosomes 1p, 4q, 5q, 8p, 11q, 14q, 15q, 17p, 18, and 22. Frequent uniparental disomy was also identified in chromosomes 8p, 17p, and 18q. Very common CNA and LOH were present at narrow loci of <1 Mbp containing only a few genes. In addition, we revealed a number of novel CNA and LOH that were linked statistically to the prognosis of the patients. The precise and large‐scale measurement of CNA and LOH in the CRC genome is efficient for pinpointing prognosis‐related genome regions as well as providing a list of unknown genes that are likely to be involved in CRC development. (Cancer Sci 2008; 99: 1835–1840)


Nature Genetics | 2016

Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults

Takahiko Yasuda; Shinobu Tsuzuki; Masahito Kawazu; Fumihiko Hayakawa; Shinya Kojima; Toshihide Ueno; Naoto Imoto; Shinji Kohsaka; Akiko Kunita; Koichiro Doi; Toru Sakura; Toshiaki Yujiri; Eisei Kondo; Katsumichi Fujimaki; Yasunori Ueda; Yasutaka Aoyama; Shigeki Ohtake; Junko Takita; Eirin Sai; Masafumi Taniwaki; Mineo Kurokawa; Shinichi Morishita; Masashi Fukayama; Hitoshi Kiyoi; Yasushi Miyazaki; Tomoki Naoe; Hiroyuki Mano

The oncogenic mechanisms underlying acute lymphoblastic leukemia (ALL) in adolescents and young adults (AYA; 15–39 years old) remain largely elusive. Here we have searched for new oncogenes in AYA-ALL by performing RNA-seq analysis of Philadelphia chromosome (Ph)-negative AYA-ALL specimens (n = 73) with the use of a next-generation sequencer. Interestingly, insertion of D4Z4 repeats containing the DUX4 gene into the IGH locus was frequently identified in B cell AYA-ALL, leading to a high level of expression of DUX4 protein with an aberrant C terminus. A transplantation assay in mice demonstrated that expression of DUX4-IGH in pro-B cells was capable of generating B cell leukemia in vivo. DUX4 fusions were preferentially detected in the AYA generation. Our data thus show that DUX4 can become an oncogenic driver as a result of somatic chromosomal rearrangements and that AYA-ALL may be a clinical entity distinct from ALL at other ages.

Collaboration


Dive into the Toshihide Ueno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manabu Soda

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Lim Choi

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge