Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiki Sato is active.

Publication


Featured researches published by Toshiki Sato.


Proceedings of SPIE | 2016

First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance

Takashi Okajima; Yang Soong; Peter J. Serlemitsos; Hideyuki Mori; Larry Olsen; David Robinson; Richard Koenecke; Bill Chang; Devin Hahne; Ryo Iizuka; Manabu Ishida; Yoshitomo Maeda; Toshiki Sato; Naomichi Kikuchi; Sho Kurashima; Nozomi Nakaniwa; Takayuki Hayashi; K. Ishibashi; Takuya Miyazawa; Kenji Tachibana; Keisuke Tamura; Akihiro Furuzawa; Yuzuru Tawara; Satoshi Sugita

ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXAs H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by NASAs Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beamline at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm2 at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm2 at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions). The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X-ray mirror, which is extremely light-weight and very low cost, yet produces large effective area over a wide energy-band. Its area-mass ratio is the largest, 16 cm2/kg, among ASTRO-H, Chandra, and XMM-Newton mirrors. The aluminum foil mirror is a still compelling technology depending on the mission science goal.


Proceedings of SPIE | 2016

In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer

Maurice A. Leutenegger; Marc Audard; Gregory V. Brown; Meng P. Chiao; Megan E. Eckart; Ryuichi Fujimoto; Akihiro Furuzawa; Matteo Guainazzi; D. Haas; Jan-Willem den Herder; Takayuki Hayashi; Ryo Iizuka; Manabu Ishida; Yoshitaka Ishisaki; Richard L. Kelley; Naomichi Kikuchi; Caroline A. Kilbourne; Shu Koyama; Sho Kurashima; Yoshitomo Maeda; Maxim Markevitch; Dan McCammon; Kazuhisa Mitsuda; Hideyuki Mori; Nozomi Nakaniwa; Takashi Okajima; Stephane Paltani; Robert Petre; F. Scott Porter; Kosuke Sato

The Soft X-ray Spectrometer (SXS) onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3-12 keV band. Extensive pre- flight calibration measurements are the basis for our modeling of the pulse-height-energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse-height-energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source, and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsars to validate our models of the telescope area and detector efficiency, and to derive a more accurate value for the thickness of the gate valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab pulsar to refine the pixel-to-pixel timing and validate the absolute timing.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Examining the Angular Resolution of the Astro-H's Soft X-Ray Telescopes

Toshiki Sato; Ryo Iizuka; Manabu Ishida; Naomichi Kikuchi; Yoshitomo Maeda; Sho Kurashima; Nozomi Nakaniwa; Kazuki Tomikawa; Takayuki Hayashi; Hideyuki Mori; Takashi Okajima; Peter J. Serlemitsos; Yang Soong; Takanori Izumiya; Sari Minami

Abstract. The international x-ray observatory ASTRO-H was renamed “Hitomi” after launch. It covers a wide energy range from a few hundred eV to 600 keV. It is equipped with two soft x-ray telescopes (SXTs: SXT-I and SXT-S) for imaging the soft x-ray sky up to ∼12  keV, which focus an image onto the respective focal-plane detectors: CCD camera (SXI) and a calorimeter (SXS). The SXTs are fabricated in a quadrant unit. The angular resolution in half-power diameter (HPD) of each quadrant of the SXTs ranges between 1.1 and 1.4 arc min at 4.51 keV. It was also found that one quadrant has an energy dependence on the HPD. We examine the angular resolution with “spot scan” measurements. In order to understand the cause of imaging capability deterioration and to reflect it to the future telescope development, we carried out spot scan measurements, in which we illuminate all over the aperture of each quadrant with a square beam 8 mm on a side. Based on the scan results, we made “maps” of image blurring and a focus position. The former and the latter reflect figure error and positioning error, respectively, of the foils that are within the incident 8  mm×8  mm beam. As a result, we estimated those errors in a quadrant to be ∼0.9 to 1.0 and ∼0.6 to 0.9 arc min, respectively. We found that the larger the positioning error in a quadrant is, the larger its HPD is. The HPD map, which manifests the local image blurring, is very similar from quadrant to quadrant, but the map of the focus position is different from location to location in each telescope. It is also found that the difference in local performance causes energy dependence of the HPD.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

Upgrade of the 30-m x-ray pencil beam line at the Institute of Space and Astronautical Science

Takayuki Hayashi; Toshiki Sato; Naomichi Kikuchi; Sho Kurashima; Nozomi Nakaniwa; Takuro Sato; Ryo Iizuka; Yoshitomo Maeda; Manabu Ishida

Abstract. The 30-m x-ray pencil beam line at the Institute of Space and Astronautical Science has been upgraded. The vacuum chamber has been replaced by a new cylindrical chamber of diameter 1.8 m and length 11.3 m. Stages on which a telescope and detectors had been mounted were also replaced. At the same time, a new charge-coupled device consisting of 1240×1152  pixels of size 22.5×22.5  μm2 was introduced. The detector stage can be moved along the x-ray beam in the vacuum chamber, which enables us to vary the distance between the sample and the detectors from 0.7 to 9 m. The two stages can be moved in a square region 500×500  mm2 in the plane normal to the x-ray beam. The pitching of moving axes of Y direction (horizontal and normal to the beam) of the sample and the detector stages is somewhat large, but does not exceed 60 arc sec. The pitching of the other axes and the yawing of all the axes are less than 30 arc sec. As for rolling, we could obtain only the upper limits because of the difficulty in measuring them. The upper limit of the Z direction (vertical and normal to the beam) of the detector stage moving axis is somewhat large and is about 60 arc sec, and those of the other axes are less than 30 arc sec. A summary of the beam line performance is presented. Soon after the upgrade, the ASTRO-H Soft X-ray telescopes were calibrated in this beam line.


The Astrophysical Journal | 2017

Direct Ejecta Velocity Measurements of Tycho's Supernova Remnant

Toshiki Sato; John P. Hughes

We present the first direct ejecta velocity measurements of Tychos supernova remnant (SNR). Chandras high angular resolution images reveal a patchy structure of radial velocities in the ejecta that can be separated into distinct redshifted, blueshifted, and low velocity ejecta clumps or blobs. The typical velocities of the redshifted and blueshifted blobs are <~ 7,800 km/s and <~ 5,000 km/s, respectively. The highest velocity blobs are located near the center, while the low velocity ones appear near the edge as expected for a generally spherical expansion. Systematic uncertainty on the velocity measurements from gain calibration was assessed by carrying out joint fits of individual blobs with both the ACIS-I and ACIS-S detectors. We determine the three-dimensional kinematics of the Si- and Fe-rich clumps in the southeastern quadrant and show that these knots form a distinct, compact, and kinematically-connected structure, possibly even a chain of knots strung along the remnants edge. By examining the viewing geometries we conclude that the knots in the southeastern region are unlikely to be responsible for the high velocity Ca II absorption features seen in the light echo spectrum of SN 1572, the originating event for Tychos SNR.


Optics Express | 2016

Atomic scattering factor of the ASTRO-H (Hitomi) SXT reflector around the gold's L edges.

Naomichi Kikuchi; Sho Kurashima; Manabu Ishida; Ryo Iizuka; Yoshitomo Maeda; Takayuki Hayashi; Takashi Okajima; H. Matsumoto; Ikuyuki Mitsuishi; Shigetaka Saji; Toshiki Sato; Sasagu Tachibana; Hideyuki Mori; Finn Erland Christensen; Nicolai F. Brejnholt; Kiyofumi Nitta; Tomoya Uruga

The atomic scattering factor in the energy range of 11.2-15.4 keV for the ASTRO-H Soft X-ray Telescope (SXT) is reported. The large effective area of the SXT makes use of photon spectra above 10 keV viable, unlike most other X-ray satellites with total-reflection mirror optics. Presence of golds L-edges in the energy band is a major issue, as it complicates the function of the effective area. In order to model the area, the reflectivity measurements in the 11.2-15.4 keV band with the energy pitch of 0.4 - 0.7 eV were made in the synchrotron beam-line Spring-8 BL01B1. We obtained atomic scattering factors f1 and f2 by the curve fitting to the reflectivities of our witness sample. The edges associated with the L-I, II, and III transitions are identified, of which the depths are found to be roughly 60% shallower than those expected from the Henkes atomic scattering factor.


Proceedings of SPIE | 2014

Revealing a detailed performance of the soft x-ray telescopes of the ASTRO-H mission

Toshiki Sato; Ryo Iizuka; T. Hayashi; Yoshitomo Maeda; Manabu Ishida; Kazuki Tomikawa; Naomichi Kikuchi; Takashi Okajima; Yang Soong; Peter J. Serlemitsos; Hideyuki Mori; Takanori Izumiya; Sari Minami

The international X-ray observatory, ASTRO-H is currently planed as launched in 2015. The ASTRO-H mission covers a wide energy range from a few hundreds eV to 600 keV. The two Soft X-ray Telescopes (SXT- 1 and SXT-2) play a role to image the soft X-ray sky up to ~12 keV in that range. Each of them focuses an image on the focal plane detectors of the CCD camera (SXI) and the calorimeter (SXS-XCS), respectively. In this paper, we present spot scan measurements of the two SXTs. The spot scan fully illuminates the telescope by mapping with the 8 mm by 8 mm beam and creates the ”maps” of the half power diameter (HPD) and the focal location of the focused image. We found variations of performance at local area of the telescope. Each of the spot images has different focal-location and different HPD. Moreover, we found that the map of the HPD is very similar from quadrant to quadrant, but the map of the focal location is different from quadrant to quadrant, from radius to radius, and from azimuthal angle to angle.


Journal of Astronomical Telescopes, Instruments, and Systems | 2018

Ground-Based X-Ray Calibration of the Astro-H/Hitomi Soft X-Ray Telescopes

Ryo Iizuka; Takayuki Hayashi; Yoshitomo Maeda; Manabu Ishida; Kazuki Tomikawa; Toshiki Sato; Naomichi Kikuchi; Takashi Okajima; Yang Soong; Peter J. Serlemitsos; Hideyuki Mori; Takanori Izumiya; Sari Minami

Abstract. We present the summary of the on-ground calibration of two soft x-ray telescopes (SXT-I and SXT-S), developed by NASA’s Goddard Space Flight Center (GSFC), onboard Astro-H/Hitomi. After the initial x-ray measurements with a diverging beam at the GSFC 100-m beamline, we performed the full calibration of the x-ray performance, using the 30-m x-ray beamline facility at the Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency in Japan. We adopted a raster scan method with a narrow x-ray pencil beam with a divergence of ∼15″. The on-axis effective area (EA), half-power diameter, and vignetting function were measured at several energies between 1.5 and 17.5 keV. The detailed results appear in tables and figures in this paper. We measured and evaluated the performance of the SXT-S and the SXT-I with regard to the detector-limited field-of-view and the pixel size of the paired flight detector, i.e., SXS and the SXI, respectively. The primary items measured are the EA, image quality, and stray light for on-axis and off-axis sources. The accurate measurement of these parameters is vital to make the precise response function of the ASTRO-H SXTs. This paper presents the definitive results of the ground-based calibration of the ASTRO-H SXTs.


Proceedings of SPIE | 2016

Reflectivity Around the Gold L-Edges of X-Ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

Yoshitomo Maeda; Naomichi Kikuchi; Sho Kurashima; Manabu Ishida; Ryo Iizuka; Takayuki Hayashi; Takashi Okajima; H. Matsumoto; Ikuyuki Mitsuishi; Shigetaka Saji; Toshiki Sato; Sasagu Tachibana; Hideyuki Mori; Finn Erland Christensen; Nicolai F. Brejnholt; Kiyofumi Nitta; Tomoya Uruga

The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3{12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique (Okajima et al. in this volume). A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.


The Astrophysical Journal | 2018

X-Ray Measurements of the Particle Acceleration Properties at Inward Shocks in Cassiopeia A

Toshiki Sato; Satoru Katsuda; Mikio Morii; Aya Bamba; John P. Hughes; Yoshitomo Maeda; Manabu Ishida; Federico Fraschetti

We present new evidence that the bright non-thermal X-ray emission features in the interior of the Cassiopeia A supernova remnant (SNR) are caused by inward moving shocks based on Chandra and NuSTAR observations. Several bright inward-moving filaments were identified using monitoring data taken by Chandra in 2000-2014. These inward-moving shock locations are nearly coincident with hard X-ray (15-40 keV) hot spots seen by NuSTAR. From proper motion measurements, the transverse velocities were estimated to be in the range

Collaboration


Dive into the Toshiki Sato's collaboration.

Top Co-Authors

Avatar

Yoshitomo Maeda

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Manabu Ishida

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Ryo Iizuka

Japan Aerospace Exploration Agency

View shared research outputs
Top Co-Authors

Avatar

Takashi Okajima

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Naomichi Kikuchi

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Sho Kurashima

Tokyo Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Hideyuki Mori

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge