Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshimori Honjo is active.

Publication


Featured researches published by Toshimori Honjo.


Optics Express | 2011

Field test of quantum key distribution in the Tokyo QKD Network

Masahide Sasaki; Mikio Fujiwara; H. Ishizuka; W. Klaus; K. Wakui; M. Takeoka; Shigehito Miki; Taro Yamashita; Zhen Wang; Akihiro Tanaka; Ken-ichiro Yoshino; Yoshihiro Nambu; Shigeki Takahashi; Akio Tajima; Akihisa Tomita; T. Domeki; Toshio Hasegawa; Y. Sakai; H. Kobayashi; T. Asai; Kaoru Shimizu; T. Tokura; Toyohiro Tsurumaru; Mitsuru Matsui; Toshimori Honjo; Kiyoshi Tamaki; Hiroki Takesue; Yasuhiro Tokura; James F. Dynes; A. R. Dixon

A secure communication network with quantum key distribution in a metropolitan area is reported. Six different QKD systems are integrated into a mesh-type network. GHz-clocked QKD links enable us to demonstrate the world-first secure TV conferencing over a distance of 45km. The network includes a commercial QKD product for long-term stable operation, and application interface to secure mobile phones. Detection of an eavesdropper, rerouting into a secure path, and key relay via trusted nodes are demonstrated in this network.


New Journal of Physics | 2005

Differential phase shift quantum key distribution experiment over 105 km fibre

Hiroki Takesue; Eleni Diamanti; Toshimori Honjo; Carsten Langrock; Martin M. Fejer; Kyo Inoue; Yoshihisa Yamamoto

We report a quantum key distribution experiment based on the differential phase shift keying (DPSK) protocol with a Poissonian photon source, in which secure keys were generated over >100 km fibre for the first time. We analysed the security of the DPSK protocol and showed that it is robust against strong attacks by Eve, including a photon number splitting attack. To implement this protocol, we developed a new detector for the 1.5 μm band based on frequency up-conversion in a periodically poled lithium niobate waveguide followed by an Si avalanche photodiode. The use of detectors increased the sifted key generation rate up to >1 Mbit s−1 over 30 km fibre, which is two orders of magnitude larger than the previous record.


Optics Letters | 2004

Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer.

Toshimori Honjo; Kyo Inoue; Hiroshi Takahashi

A differential-phase-shift quantum key distribution experiment was carried out with a planar light-wave circuit (PLC) Mach-Zehnder interferometer. This scheme has two advantages: it requires no polarization control and has a high repetition frequency, provided that a stable interferometer is available. Stable polarization-insensitive operation was achieved with an interferometer fabricated by PLC technology. Raw key creation at a rate of 3076 bits/s with a 5.0% quantum bit-error rate was achieved over 20 km of fiber. The stability of the PLC interferometer was examined.


Optics Express | 2009

Efficient entanglement distribution over 200 kilometers.

James F. Dynes; Hiroki Takesue; Zhiliang Yuan; A. W. Sharpe; Kenichi Harada; Toshimori Honjo; Hidehiko Kamada; Osamu Tadanaga; Yoshiki Nishida; Masaki Asobe; A. J. Shields

Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.


Applied Physics Letters | 2010

Single-photon detection using magnesium diboride superconducting nanowires

Hiroyuki Shibata; Hiroki Takesue; Toshimori Honjo; Tatsushi Akazaki; Yasuhiro Tokura

We fabricated 10 nm thick MgB2 nanowires with a width down to 100 nm using the liftoff process. The I-V characteristics of the nanowire show hysteresis and a sharp voltage jump at Ic. Though a 150 nm wide nanowire exhibits the capacity for detecting a single photon at 405 nm wavelength, the nanowire is too wide to detect a single photon at 1560 nm. A 100 nm wide nanowire exhibits the capacity for detecting single photons in the 405–1560 nm wavelength range. This indicates a possible application of MgB2 as a high-performance superconducting nanowire single-photon detector.


Optics Express | 2007

Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors.

Toshimori Honjo; Hiroki Takesue; Hidehiko Kamada; Yoshiki Nishida; Osamu Tadanaga; Masaki Asobe; Kyoichi Inoue

We report an experimental demonstration of the distribution of time-bin entangled photon pairs over 100 km of optical fiber. In our experiment, 1.5-mum non-degenerated time-bin entangled photon pairs were generated with a periodically poled lithium niobate (PPLN) waveguide by using the parametric down conversion process. Combining this approach with ultra-low-loss filters to eliminate the pump light and separate signal and idler photons, we obtained an efficient entangled photon pair source. To detect the photons, we used single-photon detectors based on frequency up-conversion. These detectors operated in a non-gated mode so that we could use a pulse stream of time correlated entangled photon pairs at a high repetition frequency (1 GHz). Using these elements, we distributed time-bin entangled photon pairs over 100 km of dispersion shifted fiber and performed a two-photon interference experiment. We obtained a coincidence fringe of 81.6% visibility without subtracting any background noise, such as accidental coincidence or dark count, which was good enough to violate Bells inequality. Thus, we successfully distributed time-bin entangled photon pairs over 100 km.


Optics Express | 2011

High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes

Naoto Namekata; Hiroki Takesue; Toshimori Honjo; Yasuhiro Tokura; Shuichiro Inoue

We have demonstrated quantum key distribution (QKD) over 100 km using single-photon detectors based on InGaAs/InP avalanche photodiodes (APDs). We implemented the differential phase shift QKD (DPS-QKD) protocol with electrically cooled and 2-GHz sinusoidally gated APDs. The single-photon detector has a dark count probability of 2.8 × 10(-8) (55 counts per second) with a detection efficiency of 6 %, which enabled us to achieve 24 kbit/s secure key rate over 100 km of optical fiber. The DPS-QKD system offers better performances in a practical way than those achieved using superconducting single-photon detectors. Moreover, the distance that secure keys against the general individual attacks can be distributed has been extended to 160 km.


Optics Express | 2008

Long-distance entanglement-based quantum key distribution over optical fiber.

Toshimori Honjo; Sae Woo Nam; Hiroki Takesue; Qiang Zhang; Hidehiko Kamada; Yoshiki Nishida; Osamu Tadanaga; Masaki Asobe; Burm Baek; Robert H. Hadfield; Shigehito Miki; Mikio Fujiwara; Masahide Sasaki; Zhen Wang; Kyoichi Inoue; Yoshihisa Yamamoto

We report the first entanglement-based quantum key distribution (QKD) experiment over a 100-km optical fiber. We used superconducting single photon detectors based on NbN nanowires that provide high-speed single photon detection for the 1.5-mum telecom band, an efficient entangled photon pair source that consists of a fiber coupled periodically poled lithium niobate waveguide and ultra low loss filters, and planar lightwave circuit Mach-Zehnder interferometers (MZIs) with ultra stable operation. These characteristics enabled us to perform an entanglement-based QKD experiment over a 100-km optical fiber. In the experiment, which lasted approximately 8 hours, we successfully generated a 16 kbit sifted key with a quantum bit error rate of 6.9 % at a rate of 0.59 bits per second, from which we were able to distill a 3.9 kbit secure key.


Applied Physics Letters | 2007

Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode

Naoto Namekata; Go Fujii; Shuichiro Inoue; Toshimori Honjo; Hiroki Takesue

The authors report a quantum key distribution experiment, in which they implemented a differential phase shift quantum key distribution protocol, using single-photon detectors based on InGaAs∕InP avalanche photodiodes operated with a sinusoidal gating. The single-photon detectors were operated at a repetition frequency of 500MHz with low after pulsing probabilities and low dark counts. A sifted key generation rate of 1.5Mbit∕s was achieved over a communication distance of 15km. Taking account of the security of the protocol against general individual attacks, secure keys can be generated with a rate of 0.33Mbit∕s.


Science | 2016

A coherent Ising machine for 2000-node optimization problems

Takahiro Inagaki; Yoshitaka Haribara; Koji Igarashi; Tomohiro Sonobe; Shuhei Tamate; Toshimori Honjo; Alireza Marandi; Peter L. McMahon; Takeshi Umeki; Koji Enbutsu; Osamu Tadanaga; Hirokazu Takenouchi; Kazuyuki Aihara; Ken-ichi Kawarabayashi; Kyo Inoue; Shoko Utsunomiya; Hiroki Takesue

Taking the pulse of optimization Finding the optimum solution of multiparameter or multifunctional problems is important across many disciplines, but it can be computationally intensive. Many such problems defined as computationally difficult can be mathematically mapped onto the so-called Ising problem, which looks at finding the minimum energy configuration for an array of coupled spins. Inagaki et al. and McMahon et al. show that an optical processing approach based on a network of coupled optical pulses in a ring fiber can be used to model and optimize large-scale Ising systems. Such a scalable architecture could help to optimize solutions to a wide range of complex problems. Science, this issue pp. 603 and 614 An optical-based processor is developed to solve a broad class of complex optimization problems. The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

Collaboration


Dive into the Toshimori Honjo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroki Takesue

Nippon Telegraph and Telephone

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hidehiko Kamada

Nippon Telegraph and Telephone

View shared research outputs
Top Co-Authors

Avatar

Osamu Tadanaga

Nippon Telegraph and Telephone

View shared research outputs
Top Co-Authors

Avatar

Kaoru Shimizu

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiki Nishida

Nippon Telegraph and Telephone

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge