Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshio Yamazaki is active.

Publication


Featured researches published by Toshio Yamazaki.


Journal of Magnetic Resonance | 2015

Achievement of 1020 MHz NMR

Kenjiro Hashi; Shinobu Ohki; Shinji Matsumoto; Gen Nishijima; Atsushi Goto; Kenzo Deguchi; Kazuhiko Yamada; Takashi Noguchi; Shuji Sakai; Masato Takahashi; Yoshinori Yanagisawa; Seiya Iguchi; Toshio Yamazaki; Hideaki Maeda; Ryoji Tanaka; Takahiro Nemoto; Hiroto Suematsu; Takashi Miki; Kazuyoshi Saito; Tadashi Shimizu

We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the worlds highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra.


Journal of Magnetic Resonance | 2010

Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz.

Yoshinori Yanagisawa; Hideki Nakagome; K. Tennmei; Mamoru Hamada; Masatoshi Yoshikawa; A. Otsuka; Masami Hosono; Tsukasa Kiyoshi; M. Takahashi; Toshio Yamazaki; Hideaki Maeda

We have begun a project to develop an NMR spectrometer that operates at frequencies beyond 1 GHz (magnetic field strength in excess of 23.5 T) using a high temperature superconductor (HTS) innermost coil. As the first step, we developed a 500 MHz NMR with a Bi-2223 HTS innermost coil, which was operated in external current mode. The temporal magnetic field change of the NMR magnet after the coil charge was dominated by (i) the field fluctuation due to a DC power supply and (ii) relaxation in the screening current in the HTS tape conductor; effect (i) was stabilized by the 2H field-frequency lock system, while effect (ii) decreased with time due to relaxation of the screening current induced in the HTS coil and reached 10(-8)(0.01 ppm)/h on the 20th day after the coil charge, which was as small as the persistent current mode of the NMR magnet. The 1D (1)H NMR spectra obtained by the 500 MHz LTS/HTS magnet were nearly equivalent to those obtained by the LTS NMR magnet. The 2D-NOESY, 3D-HNCO and 3D-HNCACB spectra were achieved for ubiquitin by the 500 MHz LTS/HTS magnet; their quality was closely equivalent to that achieved by a conventional LTS NMR. Based on the results of numerical simulation, the effects of screening current-induced magnetic field changes are predicted to be harmless for the 1.03 GHz NMR magnet system.


Journal of Magnetic Resonance | 2014

Operation of a 400 MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7−x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1 GHz

Yoshinori Yanagisawa; R. Piao; Seiya Iguchi; Hideki Nakagome; Tomoaki Takao; K. Kominato; Mamoru Hamada; Shinji Matsumoto; Hiroto Suematsu; X. Jin; Masato Takahashi; Toshio Yamazaki; Hideaki Maeda

High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba2Cu3O7-x (REBCO, RE: rare earth) conductors have an advantage over Bi2Sr2Ca2Cu3O10-x (Bi-2223) and Bi2Sr2CaCu2O8-x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the worlds first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current.


Journal of Magnetic Resonance | 2008

Towards beyond-1 GHz solution NMR: internal 2H lock operation in an external current mode.

Yoshinori Yanagisawa; Hideki Nakagome; Masami Hosono; Mamoru Hamada; Tsukasa Kiyoshi; Fumio Hobo; Masato Takahashi; Toshio Yamazaki; Hideaki Maeda

We have commenced a project to develop a beyond-1 GHz solution NMR spectrometer using a HTS coil. Due to a small residual resistance present in the HTS conductor and joint resistance between conductors, a stable persistent current sufficient for NMR measurements is unlikely. Therefore, a current has to be supplied to the HTS coil from an external power supply. The ripple of an external power supply causes a field fluctuation which must be stabilized. In this study we show results of NMR measurements using a 500-600 MHz NMR in such an external current mode: the field fluctuations are stabilized by an internal 2H lock. The field fluctuation from the external power supply comprises a major field fluctuation component at low frequencies, 0.003-0.005 Hz, and superimposed minor field ripples at 2 Hz and 50 Hz. The former limits the time interval of the internal 2H lock, while the latter generates sidebands in the NMR spectrum. Sideband and baseline noise are controlled by appropriate selection of the feedback loop parameters of the lock. The quality of the 1D-solution NMR spectra observed in external current mode is equivalent to that obtained in persistent current mode. However, if the feedback loop time is as short as the gradient pulse width, refocusing of the NMR signal is lost and NMR peaks disappear. The 2D-NOESY and the 2D-HSQC spectra of ubiquitin in an external current mode have been acquired. The quality of the 2D spectra is equivalent to those obtained in persistent current mode; i.e. the internal 2H lock operates stably over an experimental time interval of 40-50 min. To realize a beyond-1 GHz NMR spectrometer, further investigations must be made of (i) the long term stability of a DC power supply, (ii) the enhancement of the compensation field limit for the internal 2H lock, (iii) the extension of the helium refill time interval, and (iv) a method to correct the field homogeneity in the external current mode.


Journal of Magnetic Resonance | 2015

1020 MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy

Manoj Pandey; Rongchun Zhang; Kenjiro Hashi; Shinobu Ohki; Gen Nishijima; Shinji Matsumoto; Takashi Noguchi; Kenzo Deguchi; Atsushi Goto; Tadashi Shimizu; Hideaki Maeda; Masato Takahashi; Yoshinori Yanagisawa; Toshio Yamazaki; Seiya Iguchi; Ryoji Tanaka; Takahiro Nemoto; Tetsuo Miyamoto; Hiroto Suematsu; Kazuyoshi Saito; Takashi Miki; Ayyalusamy Ramamoorthy; Yusuke Nishiyama

This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.


Journal of Chemical Physics | 2006

Development of modulated rf sequences for decoupling and recoupling of nuclear-spin interactions in sample-spinning solid-state NMR: application to chemical-shift anisotropy determination.

Yusuke Nishiyama; Toshio Yamazaki; Takehiko Terao

An approach to design modulated rf sequences under sample spinning which decouple/recouple a specific nuclear-spin interaction in solid-state NMR is presented. The Euler angles of the spin rotation caused by a general rf field are forced to fulfill the symmetry principle theory for selecting an interaction of interest. Then, modulated rf sequences are directly obtained from the Euler angles with a large degree of freedom. rf sequences with high performance can be selected from them by numerically optimizing rf sequence parameters. As an example of this approach, an amplitude- and phase-modulated rf sequence to recouple chemical-shift anisotropy (CSA) is developed, which is robust with respect to rf inhomogeneity. Two-dimensional (2D) experiments with this rf sequence under on and off magic-angle spinning (MAS) provide one-dimensional and 2D powder patterns, respectively. The latter enables us to determine the CSA principal values more accurately even for overlapped signals in MAS spectra. The effectiveness of this modulated rf sequence is experimentally demonstrated on [(15)N]-N-acetyl-D,L-alanine for determination of the (15)N and (13)CO CSA principal values.


Journal of Biomolecular NMR | 1992

1H NMR studies of deuterated ribonuclease HI selectively labeled with protonated amino acids.

Yasushi Oda; Haruki Nakamura; Toshio Yamazaki; Kuniaki Nagayama; Mayumi Yoshida; Shigenori Kanaya; Morio Ikehara

SummaryTwo-dimensional (2D)1H NMR experiments using deuterium labeling have been carried out to investigate the solution structure of ribonuclease HI (RNase HI) fromEscherichia coli (E. coli), which consists of 155 amino acids. To simplify the1H NMR spectra, two fully deuterated enzymes bearing several prototed amino acids were prepared from an RNase HI overproducing strain ofE. coli grown in an almost fully deuterated medium. One enzyme was selectively labeled by protonated His, He. Val. and Leu. The other was labeled by only protonated His and Ile. The 2D1H NMR spectra of these deuterated R Nase H1 proteins, selectively labeled with protonated amino acids, were much more simple than those of the normally protonated enzyme. The simplified spectra allowed unambiguous assignments of the resonance peaks and connectivities in COSY and NOESY for the side-chain protons. The spin-lattice relaxation times of the side-chain protons of the buried His residue of the deuterated enzyme became remarkably longer than that of the protonated enzyme. In contrast, the relaxation times of the side-chain protons of exposed His residues remained essentially unchanged.


Review of Scientific Instruments | 2012

Towards a beyond 1 GHz solid-state nuclear magnetic resonance: external lock operation in an external current mode for a 500 MHz nuclear magnetic resonance.

Masato Takahashi; Yusuke Ebisawa; Konosuke Tennmei; Yoshinori Yanagisawa; Masami Hosono; Kenji Takasugi; Takashi Hase; Takayoshi Miyazaki; Teruaki Fujito; Hideki Nakagome; Tsukasa Kiyoshi; Toshio Yamazaki; Hideaki Maeda

Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb(3)Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a (7)Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm∕3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.


Journal of Magnetic Resonance | 1990

Postacquisition data processing method for suppression of the solvent signal. II. The weighted first derivative

Yutaka Kuroda; Akiyoshi Wada; Toshio Yamazaki; Kuniaki Nagayama

In this report, we focus on the spectral analysis problem and show that some extensions of the differential method (2) significantly enhance its application range and flexibility


Biochemical Journal | 2017

Effect of position-specific single-point mutations and biophysical characterization of amyloidogenic peptide fragments identified from lattice corneal dystrophy patients

Venkatraman Anandalakshmi; Elavazhagan Murugan; Eunice Goh Tze Leng; Lim Wei Ting; Toshio Yamazaki; Toshio Nagashima; Benjamin L. George; Gary Swee Lim Peh; Konstantin Pervushin; Rajamani Lakshminarayanan; Jodhbir S. Mehta

Corneal stromal dystrophies are a group of genetic disorders that may be caused by mutations in the transforming growth factor β-induced (TGFBI) gene which results in the aggregation and deposition of mutant proteins in various layers of the cornea. The type of amino acid substitution dictates the age of onset, anatomical location of the deposits, morphological features of deposits (amyloid, amorphous powder or a mixture of both forms) and the severity of disease presentation. It has been suggested that abnormal turnover and aberrant proteolytic processing of the mutant proteins result in the accumulation of insoluble protein deposits. Using mass spectrometry, we identified increased abundance of a 32 amino acid-long peptide in the 4th fasciclin-like domain-1 (FAS-1) domain of transforming growth factor β-induced protein (amino acid 611–642) in the amyloid deposits of the patients with lattice corneal dystrophies (LCD). In vitro studies demonstrated that the peptide readily formed amyloid fibrils under physiological conditions. Clinically relevant substitution (M619K, N622K, N622H, G623R and H626R) of the truncated peptide resulted in profound changes in the kinetics of amyloid formation, thermal stability of the amyloid fibrils and cytotoxicity of fibrillar aggregates, depending on the position and the type of the amino acid substitution. The results suggest that reduction in the overall net charge, nature and position of cationic residue substitution determines the amyloid aggregation propensity and thermal stability of amyloid fibrils.

Collaboration


Dive into the Toshio Yamazaki's collaboration.

Top Co-Authors

Avatar

Hideaki Maeda

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinji Matsumoto

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Atsushi Goto

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Gen Nishijima

National Institute for Materials Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge