Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiro Nagai is active.

Publication


Featured researches published by Toshiro Nagai.


Nature Genetics | 2012

Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome.

Yoshinori Tsurusaki; Nobuhiko Okamoto; Hirofumi Ohashi; Tomoki Kosho; Yoko Imai; Yumiko Hibi-Ko; Tadashi Kaname; Kenji Naritomi; Hiroshi Kawame; Keiko Wakui; Yoshimitsu Fukushima; Tomomi Homma; Mitsuhiro Kato; Yoko Hiraki; Takanori Yamagata; Shoji Yano; Seiji Mizuno; Satoru Sakazume; Takuma Ishii; Toshiro Nagai; Masaaki Shiina; Kazuhiro Ogata; Tohru Ohta; Norio Niikawa; Satoko Miyatake; Ippei Okada; Takeshi Mizuguchi; Hiroshi Doi; Hirotomo Saitsu; Noriko Miyake

By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.


Pediatrics | 2001

Serotonin Transporter Gene Variation Is a Risk Factor for Sudden Infant Death Syndrome in the Japanese Population

Naoko Narita; Masaaki Narita; Sachio Takashima; Masahiro Nakayama; Toshiro Nagai; Nobuo Okado

Objective. Serotonin (5-HT) in the nervous system is a major factor in facilitation of the brain center for respiration. Variations in the promoter region of the 5-HT transporter (5-HTT) gene have been shown to potentially regulate 5-HT activity in the brain. Therefore, we aimed to identify the possibility that specific allele variants of the 5-HTT gene can be found as a genetic background for sudden infant death syndrome (SIDS). Methods. Polymorphisms in the 5′ regulatory region of the 5-HTT gene were determined in genomic DNA obtained from 27 SIDS victims and 115 age-matched health control participants. Results. There were significant differences in genotype distribution and allele frequency of the 5-HTT promoter gene between SIDS victims and age-matched control participants. The L and XL alleles were more frequently found in SIDS victims than in age-matched control participants. Conclusion. Efficiency in the transportation of 5-HTT with the L allele is known to be higher than that with the S allele. The excitatory function by 5-HT is considered to be lower in the respiratory center of individuals with the L allele compared with those with S allele. The XL allele variant has shown another novel biological risk factor for SIDS.


Nature Genetics | 2008

Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia

Matthew J. Rock; Jean Prenen; Vincent Funari; Tara L. Funari; Barry Merriman; Stanley F. Nelson; Ralph S. Lachman; William R. Wilcox; Soraya Reyno; Roberto Quadrelli; Alicia Vaglio; Grzegorz Owsianik; Annelies Janssens; Thomas Voets; Shiro Ikegawa; Toshiro Nagai; David L. Rimoin; Bernd Nilius; Daniel H. Cohn

The brachyolmias constitute a clinically and genetically heterogeneous group of skeletal dysplasias characterized by a short trunk, scoliosis and mild short stature. Here, we identify a locus for an autosomal dominant form of brachyolmia on chromosome 12q24.1–12q24.2. Among the genes in the genetic interval, we selected TRPV4, which encodes a calcium permeable cation channel of the transient receptor potential (TRP) vanilloid family, as a candidate gene because of its cartilage-selective gene expression pattern. In two families with the phenotype, we identified point mutations in TRPV4 that encoded R616Q and V620I substitutions, respectively. Patch clamp studies of transfected HEK cells showed that both mutations resulted in a dramatic gain of function characterized by increased constitutive activity and elevated channel activation by either mechano-stimulation or agonist stimulation by arachidonic acid or the TRPV4-specific agonist 4α-phorbol 12,13-didecanoate (4αPDD). This study thus defines a previously unknown mechanism, activation of a calcium-permeable TRP ion channel, in skeletal dysplasia pathogenesis.


American Journal of Human Genetics | 2001

Genotypic and Phenotypic Spectrum in Tricho-Rhino-Phalangeal Syndrome Types I and III

Hermann-Josef Lüdecke; J. Schaper; P. Meinecke; P. Momeni; S. Groß; D. von Holtum; H. Hirche; M.J. Abramowicz; Beate Albrecht; C. Apacik; H.-J. Christen; U. Claussen; K. Devriendt; E. Fastnacht; A. Forderer; U. Friedrich; Timothy H.J. Goodship; M. Greiwe; H. Hamm; Raoul C. M. Hennekam; G.K. Hinkel; M. Hoeltzenbein; Hülya Kayserili; Frank Majewski; M. Mathieu; R. McLeod; A.T. Midro; Ute Moog; Toshiro Nagai; Norio Niikawa

Tricho-rhino-phalangeal syndrome (TRPS) is characterized by craniofacial and skeletal abnormalities. Three subtypes have been described: TRPS I, caused by mutations in the TRPS1 gene on chromosome 8; TRPS II, a microdeletion syndrome affecting the TRPS1 and EXT1 genes; and TRPS III, a form with severe brachydactyly, due to short metacarpals, and severe short stature, but without exostoses. To investigate whether TRPS III is caused by TRPS1 mutations and to establish a genotype-phenotype correlation in TRPS, we performed extensive mutation analysis and evaluated the height and degree of brachydactyly in patients with TRPS I or TRPS III. We found 35 different mutations in 44 of 51 unrelated patients. The detection rate (86%) indicates that TRPS1 is the major locus for TRPS I and TRPS III. We did not find any mutation in the parents of sporadic patients or in apparently healthy relatives of familial patients, indicating complete penetrance of TRPS1 mutations. Evaluation of skeletal abnormalities of patients with TRPS1 mutations revealed a wide clinical spectrum. The phenotype was variable in unrelated, age- and sex-matched patients with identical mutations, as well as in families. Four of the five missense mutations alter the GATA DNA-binding zinc finger, and six of the seven unrelated patients with these mutations may be classified as having TRPS III. Our data indicate that TRPS III is at the severe end of the TRPS spectrum and that it is most often caused by a specific class of mutations in the TRPS1 gene.


Journal of Assisted Reproduction and Genetics | 2007

Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST

Masayo Kagami; Toshiro Nagai; Maki Fukami; Kazuki Yamazawa; Tsutomu Ogata

AbstractPurpose: The prevalence of low birth weight (LBW) is increased in subjects born after assisted reproduction technology (ART), and defective imprinting has frequently been identified in patients with Beckwith-Wiedermann and Angelman syndromes conceived by ART. Thus, we examined methylation pattern in a girl born after ART who had Silver-Russell syndrome (SRS) which can be caused by maternal uniparental disomy for chromosome 7 and by hypomethylation of the differentially methylated region (DMR) of H19. Methods: We examined methylation status of 31 cytosines at the CpG dinucleotides in the DMR of PEG1/MEST on 7q32.2 and 23 cytosines at the CpG dinucleotides in the DMR of H19 on 11p15, using leukocyte genomic DNA. Results: Eight of the 31 cytosines in the patient and four of the 31 cytosines in the father were hypermethylated in the PEG1/MEST-DMR. In the H19-DMR, no abnormal methylation pattern was identified in the patient. Conclusion: The results suggest that hypermethylation of paternally expressed genes including PEG1/MEST, which usually have growth-promoting effects, may be relevant to LBW in subjects conceived by ART.


American Journal of Human Genetics | 2000

Molecular cytogenetic analysis of eight inversion duplications of human chromosome 13q that each contain a neocentromere.

Peter E. Warburton; Marisa Dolled; Radma Mahmood; Alicia Alonso; Shulan Li; Kenji Naritomi; Takaya Tohma; Toshiro Nagai; Tomonobu Hasegawa; Hirofumi Ohashi; Lutgarde C. P. Govaerts; Bert H.J. Eussen; Jan O. Van Hemel; Carmen B. Lozzio; Stuart Schwartz; Jennifer J. Dowhanick-Morrissette; Nancy B. Spinner; Horacio Rivera; John A. Crolla; Chih yu Yu; Dorothy Warburton

Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.


Journal of Medical Genetics | 2003

Sotos syndrome and haploinsufficiency of NSD1: clinical features of intragenic mutations and submicroscopic deletions

Toshiro Nagai; Naomichi Matsumoto; Naohiro Kurotaki; Naoki Harada; Norio Niikawa; Tsutomu Ogata; Kiyoshi Imaizumi; Kenji Kurosawa; Tatsuro Kondoh; Hirofumi Ohashi; Masato Tsukahara; Yoshio Makita; Tateo Sugimoto; Tohru Sonoda; T Yokoyama; Kimiaki Uetake; Satoru Sakazume; Yoshimitsu Fukushima; Kenji Naritomi

Sotos syndrome (MIM 117550) is a congenital developmental disorder characterised by overgrowth and advanced bone age in infancy to early childhood, mental retardation, and various minor anomalies such as macrocephaly, prominent forehead, hypertelorism, downward slanting palpebral fissures, large ears, high and narrow palate, and large hands and feet.1,2 It is also frequently associated with brain, cardiovascular, and urinary anomalies3–6 and is occasionally accompanied by malignant lesions such as Wilms tumour and hepatocarcinoma.7,8 This condition has been classified as an autosomal dominant disorder, because several familial cases consistent with dominant inheritance have been described previously.9 Thus, sporadic cases accounting for most of the Sotos syndrome patients are assumed to be the result of de novo dominant mutations. We have recently shown that Sotos syndrome is caused by haploinsufficiency of the gene for NSD1 (nuclear receptor binding Su-var, enhancer of zeste, and trithorax domain protein 1).10 NSD1 consists of 23 exons and encodes at least six functional domains possibly related to chromatin regulations (SET, PWWP-I, PWWP-II, PHD-I, PHD-II, and PHD-III), in addition to 10 putative nuclear localisation signals.11 It is expressed in several tissues including fetal/adult brain, kidney, skeletal muscle, spleen, and thymus11 and is likely to interact with nuclear receptors as a bifunctional transcriptional cofactor.12 In this paper, we report on clinical findings in Japanese patients with proven point mutations in NSD1 and those with submicroscopic deletions involving the entire NSD1 gene and discuss genotype-phenotype correlation. This study consisted of five patients with heterozygous NSD1 point mutations and 21 patients with heterozygous submicroscopic deletions involving the entire NSD1 gene. The mutations were identified by direct sequencing of exons 2–23 and their flanking introns covering the whole coding region of NSD1 ,11 using genomic DNA extracted from peripheral leucocytes or …


Human Genetics | 1998

Novel and recurrent COMP (cartilage oligomeric matrix protein) mutations in pseudoachondroplasia and multiple epiphyseal dysplasia

Shiro Ikegawa; Hirofumi Ohashi; Gen Nishimura; Kyoung Chang Kim; Akio Sannohe; Mamori Kimizuka; Yoshimitsu Fukushima; Toshiro Nagai; Yusuke Nakamura

Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are common skeletal dysplasias with impaired enchondral ossification and premature degenerative joint disease. The two disorders were in the past considered to be distinct clinical entities; however, recent studies have proven that both diseases can result from mutations of the gene encoding cartilage oligomeric matrix protein (COMP). To characterize further COMP mutations and investigate phenotype-genotype relationships, we screened this gene in 15 patients with PSACH or MED by directly sequencing polymerase chain reaction products from genomic DNA. We identified ten mutations involving conserved residues among the eight calmodulin-like repeats of the gene product: seven were novel missense mutations in exons 9, 10, 11, 13 or 14, and the other three resulted from deletion of one of the five GAC repeats in exon 13. We have found that the GAC repeats in the 7th calmodulin-like repeat in exon 13 represent a hot-spot for mutation, and that mutations in the 7th calmodulin-like repeat produce severe PSACH phenotypes while mutations elsewhere in the gene exhibit mild PSACH or MED phenotypes. These genotype-phenotype correlations may facilitate molecular diagnosis and classification of PSACH and MED, and provide insight into the relationship between structure and function of the COMP gene product.


American Journal of Medical Genetics Part A | 2006

Comprehensive genetic analysis of relevant four genes in 49 patients with Marfan syndrome or Marfan‐related phenotypes

Haruya Sakai; Remco Visser; Shiro Ikegawa; Etsuro Ito; Hironao Numabe; Yoriko Watanabe; Haruo Mikami; Tatsuro Kondoh; Hiroshi Kitoh; Ryusuke Sugiyama; Nobuhiko Okamoto; Tsutomu Ogata; Riccardo Fodde; Seiji Mizuno; Kyoko Takamura; Masayuki Egashira; Nozomu Sasaki; Sachiro Watanabe; Shigeru Nishimaki; Fumio Takada; Toshiro Nagai; Yasushi Okada; Yoshikazu Aoka; Kazushi Yasuda; Mitsuji Iwasa; Shigetoyo Kogaki; Naoki Harada; Takeshi Mizuguchi; Naomichi Matsumoto

In order to evaluate the contribution of FBN1, FBN2, TGFBR1, and TGFBR2 mutations to the Marfan syndrome (MFS) phenotype, the four genes were analyzed by direct sequencing in 49 patients with MFS or suspected MFS as a cohort study. A total of 27 FBN1 mutations (22 novel) in 27 patients (55%, 27/49), 1 novel TGFBR1 mutation in 1 (2%, 1/49), and 2 recurrent TGFBR2 mutations in 2 (4%, 2/49) were identified. No FBN2 mutation was found. Three patients with either TGFBR1 or TGFBR2 abnormality did not fulfill the Ghent criteria, but expressed some overlapping features of MFS and Loeys–Dietz syndrome (LDS). In the remaining 19 patients, either of the genes did not show any abnormalities. This study indicated that FBN1 mutations were predominant in MFS but TGFBRs defects may account for approximately 5–10% of patients with the syndrome.


Gene | 2000

PEBP2αA/CBFA1 mutations in Japanese cleidocranial dysplasia patients

Yu-Wen Zhang; Natsuo Yasui; Naoki Kakazu; Tatsuo Abe; Kenzo Takada; Shosuke Imai; Motohiko Sato; Shintaro Nomura; Takahiro Ochi; Shigeharu Okuzumi; Hiroshi Nogami; Toshiro Nagai; Hirohumi Ohashi; Yoshiaki Ito

Cleidocranial dysplasia (CCD) is an autosomal dominant human bone disease whose genetic locus has been located on chromosome 6p21, where the PEBP2alphaA/CBFA1 gene essential for osteogenesis also maps. Previously, several heterozygous mutations in PEBP2alphaA/CBFA1 were found in CCD patients. In this study, we identified six different types of mutations in PEBP2alphaA/CBFA1 in Japanese CCD patients. Four cases were similar to those reported previously: two were nonsense mutations in the Runt domain, one was a hemizygous deletion, and the other was a missense mutation in the Runt domain which abolished the DNA-binding activity of Runx2/PEBP2alphaA/CBFA1. The remaining two mutations were novel: one had a heterozygous gt-to-tt mutation at the splice donor site (gt) between the exon3-intron junction, which resulted in abnormal exon3 skipping, and the other had a mutation in exon7, which led to the introduction of a translational stop codon in the middle of the transactivation domain. Thus, defects in either the DNA-binding domain or transactivation domain of Runx2/PEBP2alphaA/CBFA1 can cause CCD. The results not only provide a strong genetic evidence that mutations involving in PEBP2alphaA/CBFA1 contribute to CCD, but also provide a useful tool to study how Runx2/PEBP2alphaA/CBFA1 plays its pivotal role during osteoblastic differentiation.

Collaboration


Dive into the Toshiro Nagai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norio Niikawa

Health Sciences University of Hokkaido

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiko Okamoto

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kenji Naritomi

University of the Ryukyus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoru Sakazume

Dokkyo Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge