Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toshiyuki Fukao is active.

Publication


Featured researches published by Toshiyuki Fukao.


Biochemical and Biophysical Research Communications | 1991

Morquio disease: Isolation, characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase

Shunji Tomatsu; Seiji Fukuda; Michiya Masue; Kazuko Sukegawa; Toshiyuki Fukao; Atsushi Yamagishi; Toshinori Hori; Hideki Iwata; Tatsuya Ogawa; Yoshihiro Nakashima; Yuko Hanyu; Takashi Hashimoto; Koiti Titani; Rieko Oyama; Masami Suzuki; Kunio Yagi; Yutaka Hayashi; Tadao Orii

We cloned and sequenced a full-length cDNA of human placental N-acetylgalactosamine-6-sulfate sulfatase, the enzyme deficient in Morquio disease. The 2339-nucleotide sequence contained 1566 nucleotides which encoded a polypeptide of 522 amino acid residues. The deduced amino acid sequence was composed of a 26-amino acid N-terminal signal peptide and a mature polypeptide of 496 amino acid residues including two potential asparagine-linked glycosylation sites. Expression of the cDNA in transfected deficient fibroblasts resulted in higher production of this sulfatase activity than in untransfected deficient fibroblasts. The cDNA clone was hybridized to only a 2.3-kilobase species of RNA in human fibroblasts. The amino acid sequence of N-acetylgalactosamine-6-sulfate sulfatase showed a high degree of homology with those of other sulfatases such as human arylsulfatases A, B or C, glucosamine-6-sulfatase, iduronate-2-sulfatase and sea urchin arylsulfatase.


Pediatric Research | 1997

Enzymes of Ketone Body Utilization in Human Tissues: Protein and Messenger RNA Levels of Succinyl-Coenzyme A (CoA):3-Ketoacid CoA Transferase and Mitochondrial and Cytosolic Acetoacetyl-CoA Thiolases

Toshiyuki Fukao; Xiang-Qian Song; Grant A. Mitchell; Seiji Yamaguchi; Kazuko Sukegawa; Tadao Orii; Naomi Kondo

We describe the distribution in human tissues of three enzymes of ketone body utilization: succinyl-CoA:3-ketoacid CoA transferase (SCOT), mitochondrial acetoacetyl-CoA thiolase (T2), and cytosolic acetoacetyl-CoA thiolase (CT). Hereditary deficiency of each of these enzymes has been associated with ketoacidosis. Physiologically the two mitochondrial enzymes have different roles: SCOT mediates energy production from ketone bodies(ketolysis), whereas T2 functions both in ketogenesis and ketolysis. In contrast, CT is implicated in cytosolic cholesterol synthesis. We investigated the tissue distribution of these enzymes in humans by quantitative immunoblots and by Northern blots. In most tissues, polypeptide and mRNA levels were proportional. CT and T2 proteins were detected in all tissues examined. CT levels were highest in liver, were 4-fold lower in adrenal glands, kidney, brain, and lung, and were lowest in skeletal and heart muscles. T2 was most abundant in liver but substantial amounts were present in kidney, heart, adrenal glands, and skeletal muscle. SCOT was detected in all tissues except liver: myocardium > brain, kidney and adrenal glands. The relative amounts of T2 and SCOT were similar in all tissues except for liver (T2 ≫ SCOT) and brain (SCOT > T2). The observed distribution of SCOT, T2, and CT is consistent with current views of their physiologic roles.


Diabetologia | 2009

Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes

Michael J. MacDonald; Melissa J. Longacre; E.-C. Langberg; Annika Tibell; Mindy A. Kendrick; Toshiyuki Fukao; Claes-Göran Östenson

Aims/hypothesisGlucose-stimulated insulin secretion is defective in patients with type 2 diabetes. We sought to acquire new information about enzymes of glucose metabolism, with an emphasis on mitochondrial enzymes, by comparing pancreatic islets of type 2 diabetes patients with those of non-diabetic controls.MethodsExpression of genes encoding 13 metabolic enzymes was estimated with microarrays and activities of up to nine metabolic enzymes were measured.ResultsThe activities of the mitochondrial enzymes, glycerol phosphate dehydrogenase, pyruvate carboxylase (PC) and succinyl-CoA:3-ketoacid-CoA transferase (SCOT) were decreased by 73%, 65% and 92%, respectively, in the diabetic compared with the non-diabetic islets. ATP citrate lyase, a cytosolic enzyme of the mitochondrial citrate pyruvate shuttle, was decreased 57%. Activities of propionyl-CoA carboxylase, NADP-isocitrate dehydrogenase, cytosolic malic enzyme, aspartate aminotransferase and malate dehydrogenase were not significantly different from those of the control. The low activities of PC and SCOT were confirmed with western blots, which showed that their protein levels were low. The correlation of relative mRNA signals with enzyme activities was good in four instances, moderate in four instances and poor in one instance. In diabetic islets, the mRNA signal of the islet cell-enriched transcription factor musculoaponeurotic fibrosarcoma oncogene homologue A, which regulates expression of islet genes, including the PC gene, was decreased to 54% of the control level. PC activity and protein levels in the non-diabetic islets were significantly lower than in islets from non-diabetic rodents.Conclusions/interpretationLow levels of certain islet metabolic enzymes, especially mitochondrial enzymes, are associated with human type 2 diabetes.


Journal of Inherited Metabolic Disease | 2014

Ketone body metabolism and its defects.

Toshiyuki Fukao; Grant A. Mitchell; Jörn Oliver Sass; Tomohiro Hori; Kenji E. Orii; Yuka Aoyama

Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with “mild” SCOT mutations may have nonketotic periods. T2-deficient patients with “mild” mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.


Molecular Genetics and Metabolism | 2008

Clinical and molecular investigations of Japanese cases of glutaric acidemia type 2.

Yuka Yotsumoto; Yuki Hasegawa; Seiji Fukuda; Hironori Kobayashi; Mitsuru Endo; Toshiyuki Fukao; Seiji Yamaguchi

Glutaric acidemia type 1 (GA1) is a metabolic disease caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Untreated patients mostly develop severe striatal degeneration. More than 200 mutations have been reported in the GCDH gene, and common R402W and IVS10-2A>C were found in Caucasian and Chinese/Taiwanese, respectively. However, in Japan, genetic mutations have only been reported in a few cases. Herein, we report the clinical and molecular basis of GA1 in 19 Japanese patients, including six previously reported patients. All cases showed high urinary glutaric acid excretion. Eleven patients were severely impaired (three patients died), three had mild impairment, and five showed normal development. Four of 5 patients that developed normally were detected in the presymptomatic stage by neonatal or sibling screening. Nineteen mutations in 26 alleles were identified, and eight of them (89 or 90delC, Y155C, IVS4+2T>C, G244S, Q352X, G354A, K361E, and 1144-1145delGC) were novel. S305L (12.1%, 4/34 alleles) was found in several cases, suggesting that this mutation is a common mutation. In contrast, R402W was not identified and IVS10-2A>C was only found in one allele, suggesting that Japanese patients with GA1 show allelic heterogeneity and have a different genetic background to patients from other countries. One of a pair of sisters with the same mutations (M339V/S305L) lacking residual activity was severely retarded, whereas the older girl remains asymptomatic at 22 years of age, indicating that genotype does not necessarily predict GA1 phenotype. We consistently found that there was no association between genotype and phenotype. However, children with mild impairment were diagnosed and treated earlier than severely impaired cases {4.7±2.5 months (range: 2-8 months) vs. 11.6±12.7 months (range: 4-51 months)}. Our results suggest that early detection and treatment but not genotype are associated with better patient outcome, reinforcing the importance of neonatal screening.


Journal of Biological Chemistry | 2011

Differences between Human and Rodent Pancreatic Islets LOW PYRUVATE CARBOXYLASE, ATP CITRATE LYASE, AND PYRUVATE CARBOXYLATION AND HIGH GLUCOSE-STIMULATED ACETOACETATE IN HUMAN PANCREATIC ISLETS

Michael J. MacDonald; Melissa J. Longacre; Scott W. Stoker; Mindy A. Kendrick; Ansaya Thonpho; Laura J. Brown; Noaman Hasan; Sarawut Jitrapakdee; Toshiyuki Fukao; Matthew S. Hanson; Luis A. Fernandez; Jon S. Odorico

Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80–90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60–75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20–30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.


Journal of Clinical Investigation | 1990

Molecular cloning and sequence of the complementary DNA encoding human mitochondrial acetoacetyl-coenzyme A thiolase and study of the variant enzymes in cultured fibroblasts from patients with 3-ketothiolase deficiency.

Toshiyuki Fukao; Seiji Yamaguchi; M Kano; Tadao Orii; Y Fujiki; Takashi Osumi; Takashi Hashimoto

Complementary DNAs encoding the precursor of human hepatic mitochondrial acetoacetyl-CoA thiolase (T2) (EC 2.3.1.9) were cloned and sequenced. The cDNA inserts in these clones were 1,518 bases in length when overlapped, and encoded the 427-amino acid precursor of this enzyme (45,199 mol wt). This amino acid sequence included a 33-residue leader peptide moiety and a 394-amino acid subunit of the mature enzyme (41,385 mol wt). The T2 gene expression in fibroblasts from four patients with 3-ketothiolase deficiency was analyzed by Northern blotting. The T2 mRNA in all four cell lines had the same 1.7 kb as that of the control. However, the amounts of T2 mRNA differed: the content was reduced in two cell lines (cases 1 and 3), whereas it was within a normal range in others (cases 2 and 4). Pulse labeling followed by subcellular fractionation revealed that the T2 proteins in the fibroblasts from these patients are present in the mitochondria. These results suggest that different mechanisms are involved in the enzyme defects in the four patients.


American Journal of Human Genetics | 2007

Genetic Basis for Correction of Very-Long-Chain Acyl-Coenzyme A Dehydrogenase Deficiency by Bezafibrate in Patient Fibroblasts : Toward a Genotype-Based Therapy

S. Gobin-Limballe; Fatima Djouadi; F. Aubey; S. E. Olpin; Brage S. Andresen; Seiji Yamaguchi; Hanna Mandel; Toshiyuki Fukao; Jos P.N. Ruiter; R. J. A. Wanders; R. McAndrew; J.J. Kim; Jean Bastin

Very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty-acid beta-oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent-onset myopathy, and for which there is no established treatment. Recent data suggest that bezafibrate could improve the FAO capacities in beta-oxidation-deficient cells, by enhancing the residual level of mutant enzyme activity via gene-expression stimulation. Since VLCAD-deficient patients frequently harbor missense mutations with unpredictable effects on enzyme activity, we investigated the response to bezafibrate as a function of genotype in 33 VLCAD-deficient fibroblasts representing 45 different mutations. Treatment with bezafibrate (400 microM for 48 h) resulted in a marked increase in FAO capacities, often leading to restoration of normal values, for 21 genotypes that mainly corresponded to patients with the myopathic phenotype. In contrast, bezafibrate induced no changes in FAO for 11 genotypes corresponding to severe neonatal or infantile phenotypes. This pattern of response was not due to differential inductions of VLCAD messenger RNA, as shown by quantitative real-time polymerase chain reaction, but reflected variable increases in measured VLCAD residual enzyme activity in response to bezafibrate. Genotype cross-analysis allowed the identification of alleles carrying missense mutations, which could account for these different pharmacological profiles and, on this basis, led to the characterization of 9 mild and 11 severe missense mutations. Altogether, the responses to bezafibrate reflected the severity of the metabolic blockage in various genotypes, which appeared to be correlated with the phenotype, thus providing a new approach for analysis of genetic heterogeneity. Finally, this study emphasizes the potential of bezafibrate, a widely prescribed hypolipidemic drug, for the correction of VLCAD deficiency and exemplifies the integration of molecular information in a therapeutic strategy.


Journal of Biological Chemistry | 2001

Epidermal Growth Factor Sensitizes Cells to Ionizing Radiation by Down-regulating Protein Mutated in Ataxia-Telangiectasia

Nuri Gueven; Katherine Keating; P. Chen; Toshiyuki Fukao; Kum Kum Khanna; Dianne Watters; Peter Rodemann; Martin F. Lavin

Epidermal growth factor (EGF) has been reported to either sensitize or protect cells against ionizing radiation. We report here that EGF increases radiosensitivity in both human fibroblasts and lymphoblasts and down-regulates both ATM (mutated in ataxia-telangiectasia (A-T)) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). No further radiosensitization was observed in A-T cells after pretreatment with EGF. The down-regulation of ATM occurs at the transcriptional level. Concomitant with the down-regulation of ATM, the DNA binding activity of the transcription factor Sp1 decreased. A causal relationship was established between these observations by demonstrating that up-regulation of Sp1 DNA binding activity by granulocyte/macrophage colony-stimulating factor rapidly reversed the EGF-induced decrease in ATM protein and restored radiosensitivity to normal levels. Failure to radiosensitize EGF-treated cells to the same extent as observed for A-T cells can be explained by induction of ATM protein and kinase activity with time post-irradiation. Although ionizing radiation damage to DNA rapidly activates ATM kinase and cell cycle checkpoints, we have provided evidence for the first time that alteration in the amount of ATM protein occurs in response to both EGF and radiation exposure. Taken together these data support complex control of ATM function that has important repercussions for targeting ATM to improve radiotherapeutic benefit.


Journal of Human Genetics | 2009

Mucolipidosis II and III alpha/beta: mutation analysis of 40 Japanese patients showed genotype–phenotype correlation

Takanobu Otomo; Takeshi Muramatsu; Tohru Yorifuji; Torayuki Okuyama; Hiroki Nakabayashi; Toshiyuki Fukao; Toshihiro Ohura; Makoto Yoshino; Akemi Tanaka; Nobuhiko Okamoto; Koji Inui; Keiichi Ozono; Norio Sakai

Mucolipidosis (ML) II alpha/beta and III alpha/beta are autosomal recessive diseases caused by a deficiency of α and/or β subunits of the enzyme N-acetylglucosamine-1-phosphotransferase, which is encoded by the GNPTAB gene. We analyzed the GNPTAB gene in 25 ML II and 15 ML III Japanese patients. In most ML II patients, the clinical conditions ‘stand alone’, ‘walk without support’ and ‘speak single words’ were impaired; however, the frequency of ‘heart murmur’, ‘inguinal hernia’ and ‘hepatomegaly and/or splenomegaly’ did not differ between ML II and III patients. We detected mutations in GNPTAB in 73 of 80 alleles. Fourteen new mutations were c.914_915insA, c.2089_2090insC, c.2427delC, c.2544delA, c.2693delA, c.3310delG, c.3388_3389insC+c.3392C>T, c.3428_3429insA, c.3741_3744delAGAA, p.R334L, p.F374L, p.H956Y, p.N1153S and duplication of exon 2. Previously reported mutations were p.Q104X, p.W894X, p.R1189X and c.2715+1G>A causing skipping of exon 13. Homozygotes or compound heterozygotes of nonsense and frameshift mutations contributed to the severe phenotype. p.F374L, p.N1153S and splicing mutations contributed to the attenuated phenotype, although coupled with nonsense mutation. These results show the effective molecular diagnosis of ML II and III and also provide phenotypic prediction. This is the first and comprehensive report of molecular analysis for ML patients of Japanese origin.

Collaboration


Dive into the Toshiyuki Fukao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tadao Orii

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge