Toste Tanhua
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Toste Tanhua.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Toste Tanhua; Arne Körtzinger; K. Friis; Darryn W. Waugh; Douglas W. R. Wallace
Increased knowledge of the present global carbon cycle is important for our ability to understand and to predict the future carbon cycle and global climate. Approximately half of the anthropogenic carbon released to the atmosphere from fossil fuel burning is stored in the ocean, although distribution and regional fluxes of the ocean sink are debated. Estimates of anthropogenic carbon (Cant) in the oceans remain prone to error arising from (i) a need to estimate preindustrial reference concentrations of carbon for different oceanic regions, and (ii) differing behavior of transient ocean tracers used to infer Cant. We introduce an empirical approach to estimate Cant that circumvents both problems by using measurement of the decadal change of ocean carbon concentrations and the exponential nature of the atmospheric Cant increase. In contrast to prior approaches, the results are independent of tracer data but are shown to be qualitatively and quantitatively consistent with tracer-derived estimates. The approach reveals more Cant in the deep ocean than prior studies; with possible implications for future carbon uptake and deep ocean carbonate dissolution. Our results suggest that this approachs applied on the unprecedented global data archive provides a means of estimating the Cant for large parts of the worlds ocean.
Journal of Geophysical Research | 2009
Toste Tanhua; E. Peter Jones; Emil Jeansson; Sara Jutterström; William M. Smethie; Douglas W.R. Wallace; Leif G. Anderson
The Arctic Ocean constitutes a large body of water that is still relatively poorly surveyed because of logistical difficulties, although the importance of the Arctic Ocean for global circulation and climate is widely recognized. For instance, the concentration and inventory of anthropogenic CO2 (C ant) in the Arctic Ocean are not properly known despite its relatively large volume of well-ventilated waters. In this work, we have synthesized available transient tracer measurements (e.g., CFCs and SF6) made during more than two decades by the authors. The tracer data are used to estimate the ventilation of the Arctic Ocean, to infer deep-water pathways, and to estimate the Arctic Ocean inventory of C ant. For these calculations, we used the transit time distribution (TTD) concept that makes tracer measurements collected over several decades comparable with each other. The bottom water in the Arctic Ocean has CFC values close to the detection limit, with somewhat higher values in the Eurasian Basin. The ventilation time for the intermediate water column is shorter in the Eurasian Basin (∼200 years) than in the Canadian Basin (∼300 years). We calculate the Arctic Ocean C ant inventory range to be 2.5 to 3.3 Pg-C, normalized to 2005, i.e., ∼2% of the global ocean C ant inventory despite being composed of only ∼1% of the global ocean volume. In a similar fashion, we use the TTD field to calculate the Arctic Ocean inventory of CFC-11 to be 26.2 ± 2.6 × 106 moles for year 1994, which is ∼5% of the global ocean CFC-11 inventory
Global Biogeochemical Cycles | 2009
Reiner Steinfeldt; Monika Rhein; John L. Bullister; Toste Tanhua
The oceans absorb and store a significant portion of anthropogenic CO2 emissions, but large uncertainties remain in the quantification of this sink. An improved assessment of the present and future oceanic carbon sink is therefore necessary to provide recommendations for long‐term global carbon cycle and climate policies. The formation of North Atlantic Deep Water (NADW) is a unique fast track for transporting anthropogenic CO2 into the oceans interior, making the deep waters rich in anthropogenic carbon. Thus the Atlantic is presently estimated to hold 38% of the oceanic anthropogenic CO2 inventory, although its volume makes up only 25% of the world ocean. Here we analyze the inventory change of anthropogenic CO2 in the Atlantic between 1997 and 2003 and its relationship to NADW formation. For the whole region between 20°S and 65°N the inventory amounts to 32.5 ± 9.5 Petagram carbon (Pg C) in 1997 and increases up to 36.0 ± 10.5 Pg C in 2003. This result is quite similar to earlier studies. Moreover, the overall increase of anthropogenic carbon is in close agreement with the expected change due to rising atmospheric CO2 levels of 1.69% a−1. On the other hand, when considering the subpolar region only, the results demonstrate that the recent weakening in the formation of Labrador Sea Water, a component of NADW, has already led to a decrease of the anthropogenic carbon inventory in this water mass. As a consequence, the overall inventory for the total water column in the western subpolar North Atlantic increased only by 2% between 1997 and 2003, much less than the 11% that would be expected from the increase in atmospheric CO2 levels.
Annual Review of Marine Science | 2016
Lynne D. Talley; Richard A. Feely; Bernadette Sloyan; Rik Wanninkhof; Molly O. Baringer; John L. Bullister; Craig A. Carlson; Scott C. Doney; Rana A. Fine; Eric Firing; Nicolas Gruber; Dennis A. Hansell; Masayoshi Ishii; Gregory C. Johnson; Katsuro Katsumata; Robert M. Key; Martin Kramp; Chris Langdon; Alison M. Macdonald; Jeremy T. Mathis; Elaine L. McDonagh; Sabine Mecking; Frank J. Millero; Calvin W. Mordy; Toshiya Nakano; Christopher L. Sabine; William M. Smethie; James H. Swift; Toste Tanhua; Andreas M. Thurnherr
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earths climate system, is taking up most of Earths excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the oceans overturning circulation.
Global Biogeochemical Cycles | 2006
Toste Tanhua; Arne Biastoch; Arne Körtzinger; Heike Lüger; Claus W. Böning; Douglas W.R. Wallace
We compare total dissolved inorganic carbon (DIC) and chlorofluorocarbon (CFC) measurements in the northwest Atlantic made during the Transient Tracers in the Ocean, North Atlantic Study (TTO‐NAS) in 1981 with modern measurements from a cruise in 2004. The observed changes in the DIC and CFC fields are compared to those predicted from an eddy‐permitting ocean circulation model. The rapid, but time‐variable, atmospheric CFC increase in relation to the relatively steady anthropogenic CO2 increase influences the relationship between the observed uptake of DIC and CFC. We demonstrate the importance of ocean mixing in the calculation of anthropogenic CO2 (Cant) based on transient tracer data by comparing our observations to a “no‐mixing” scenario. We further find that the Cant is in transient steady state in the North Atlantic; that is, the Cant concentration increases proportionally over time through the whole water column in a manner that is directly related to the time‐dependent surface concentration.
Geophysical Research Letters | 2009
Lothar Stramma; Martin Visbeck; Peter Brandt; Toste Tanhua; Douglas W.R. Wallace
Observations and model results both indicate increasing oxygen minimum zones (OMZ) in the tropical oceans. Here we report on record low dissolved oxygen minimum concentrations in the eastern tropical North Atlantic in fall of 2008, with less than 40 mu mol kg(-1) in the core of the OMZ. There we find a deoxygenation rate of similar to 0.5 mu mol kg(-1) a(-1) during the last decades on two repeat sections at 7.5 and 11 degrees N. The potential temperature and salinity in the surface and central water layers increased on both sections compared to previous observations. However, in contrast to the oxygen decrease in the core of the OMZ, increasing oxygen concentrations were observed in the central water layer above the OMZ. The observed deoxygenation was thus restricted to the core of the oxygen minimum layer. It remains unclear whether the vertical expansion of the oxygen minimum represents a long time trend or decadal variations
Journal of Geophysical Research | 2012
Peter Holtermann; Lars Umlauf; Toste Tanhua; Oliver Schmale; Gregor Rehder; Joanna J. Waniek
In this study, results from the Baltic Sea Tracer Release Experiment (BATRE) are described, in which deep water mixing rates and mixing processes in the central Baltic Sea were investigated. In September 2007, an inert tracer gas (CF3SF5) was injected at approximately 200 m depth in the Gotland Basin, and the subsequent spreading of the tracer was observed during six surveys until February 2009. These data describe the diapycnal and lateral mixing during a stagnation period without any significant deep water renewal due to inflow events. As one of the main results, vertical mixing rates were found to dramatically increase after the tracer had reached the lateral boundaries of the basin, suggesting boundary mixing as the key process for basin-scale vertical mixing. Basin-scale vertical diffusivities were of the order of 10−5 m2 s−1 (about 1 order of magnitude larger than interior diffusivities) with evidence for a seasonal and vertical variability. In contrast to tracer experiments in the open ocean, the basin geometry (hypsography) was found to have a crucial impact on the vertical tracer spreading. The e-folding time scale for deep water renewal due to mixing was slightly less than 2 years, the time scale for the lateral homogenization of the tracer patch was of the order of a few months. Key Points: Mixing rates in the Gotland Basin are dominated by boundary mixing processes; The time scale for Gotland Basin deep water renewal is approximately 2 years; Mixing rates determined from the tracer CF3SF5
Geophysical Research Letters | 1994
Mikael Krysell; Elisabet Fogelqvist; Toste Tanhua
Two chlorofluorocarbons (CFC-11 and carbon tetrachloride, CCl4) widely used as tracers for dating water masses, were measured in the Gotland Basin of the Baltic Sea. At the time of the survey, the bottom water of the basin had remained stagnant for 15 years and anoxic for about the same period of time, and the concentrations of both CFC-11 and CCl4 decrease dramatically with depth below the mixed layer. Furthermore, the ratio of CFC-11 to CCl4 increases with depth under the mixed layer along with a steep decrease in oxygen concentration. This is contrary to what would be expected from the atmospheric histories. The most plausible explanation for this is that there is a mechanism whereby the CCl4 is removed from the water mass under anoxic and suboxic conditions.
Journal of Geophysical Research | 2012
Donata Banyte; Toste Tanhua; Martin Visbeck; Douglas W.R. Wallace; Johannes Karstensen; Gerd Krahmann; Anke Schneider; Lothar Stramma; Marcus Dengler
A deliberate tracer release experiment in 2008–2010 was used to study diapycnal mixing in the tropical northeastern Atlantic. The tracer (CF3SF5) was injected on the isopycnal surface σΘ = 26.88 kg m−3, which corresponds to about 330 m depth. Three surveys, performed 7, 20, and 30 months after the release, sampled the vertically and laterally expanding tracer patch. The mean diapycnal mixing estimate over the entire region occupied by the tracer and the period of 30 months was found to be (1.19 ± 0.18) × 10−5 m2 s−1, or, alternatively, (3.07 ± 0.58) × 10−11 (kg m−3)2 s−1 as computed from the advection-diffusion equation in isopycnal coordinates with the thickness-weighted averaging. The latter method is preferable in the regions of different stratification for it yields local diapycnal mixing estimates varying less with stratification than their Cartesian coordinate counterparts. Results of this study are comparable to the results of the North Atlantic tracer release experiment (NATRE). However, the internal wave-wave interaction models predict reduced mixing from the breaking of internal waves at low latitudes. Thus, the diapycnal diffusivity found in this study is higher than parameterized by the low latitude of the site (4°N–12°N).
Tanhua, Toste, Olsson, K.A. and Jeansson, E. (2008) Tracer evidence of the origin and variability of Denmark Strait Overflow Water Arctic-Subarctic Ocean Fluxes: Defining the role of the Nordic Seas in Climate. Springer, Dordrecht, pp. 475-503. ISBN 978-1-4020-6773-0 DOI 10.1007/978-1-4020-6774-7 <http://dx.doi.org/10.1007/978-1-4020-6774-7>. | 2008
Toste Tanhua; K. Anders Olsson; Emil Jeansson
The overflow of dense water from the Nordic Seas to the North Atlantic through the Denmark Strait is an important part of the global thermohaline circulation. Denmark Strait Overflow Water (DSOW) has its sources in the Nordic Seas and the Arctic Ocean and is a complex mixture of several water masses. The magnitude and variability of the overflow are significant not only for the local oceanography, but also for the global large-scale circulation. Just as the intensity of the overflow is temporally and geographically variable, so are the hydrographic and hydrochemical characteristics of the overflow shifting. Variations in these properties have two possible sources: (1) changes in the characteristics of water masses and, (2) changes in the water mass composition of the overflow. Changes in atmospheric forcing and convection within the source region for DSOW might change its water mass composition and characteristics, changes that in turn will propagate to the North Atlantic Deep Water. The variability of the overflows has received significant attention the last couple of decades, not least through efforts by VEINS, ASOF and related projects. Although there has been significant progress during this time, as is evident from papers in this volume, many questions remain, at least partly, unresolved. In this chapter, we have synthesised the knowledge of the characterisation and origin of DSOW from historical and recent studies, all using chemical tracers.