Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Toya Ohashi is active.

Publication


Featured researches published by Toya Ohashi.


Journal of Neuroscience Research | 2003

Adenoviral gene transfer of GDNF, BDNF and TGFβ2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult motoneurons after facial nerve avulsion

Tsuyoshi Sakamoto; Yoko Kawazoe; Jin-Song Shen; Yasuo Takeda; Yoshihiro Arakawa; Junko Ogawa; Kiyomitsu Oyanagi; Toya Ohashi; Kazutada Watanabe; Kiyoharu Inoue; Yoshikatsu Eto; Kazuhiko Watabe

We examined neuroprotective effects of recombinant adenoviral vectors encoding glial cell line‐derived neurotrophic factor (GDNF), brain‐derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), cardiotrophin‐1 (CT1), insulin‐like growth factor‐1 (IGF1), and transforming growth factor‐β2 (TGFβ2) on lesioned adult rat facial motoneurons. The right facial nerves of adult Fischer 344 male rats were avulsed and removed from the stylomastoid foramen, and adenoviral vectors were injected into the facial canal. Animals avulsed and treated with adenovirus encoding GDNF, BDNF, CNTF, CT1, IGF1 and TGFβ2 showed intense immunolabeling for these factors in lesioned facial motoneurons, respectively, indicating adenoviral induction of the neurotrophic factors in these neurons. The treatment with adenovirus encoding GDNF, BDNF, or TGFβ2 after avulsion significantly prevented the loss of lesioned facial motoneurons, improved choline acetyltransferase immunoreactivity and prevented the induction of nitric oxide synthase activity in these neurons. The treatment with adenovirus encoding CNTF, CT1 or IGF1, however, failed to protect these neurons after avulsion. These results indicate that the gene transfer of GDNF and BDNF and TGFβ2 but not CNTF, CT1 or IGF1 may prevent the degeneration of motoneurons in adult humans with motoneuron injury and motor neuron diseases.


Gene Therapy | 2003

Adenovirus-mediated overexpression of a gene prevents hearing loss and progressive inner hair cell loss after transient cochlear ischemia in gerbils

Nobuhiro Hakuba; Kazuhiko Watabe; J Hyodo; Toya Ohashi; Yoshikatsu Eto; M Taniguchi; Lihua Yang; Junya Tanaka; Ryuji Hata; Kiyofumi Gyo

The use of adenoviral vectors has recently provided a novel strategy for direct gene transfer into the cochlea. In this study, we assessed the utility of an adenoviral vector expressing glial-cell-derived neurotrophic factor (GDNF) in ischemia–reperfusion injury of the gerbil cochlea. The vector was injected through the round window 4 days before ischemic insult. The distribution of a reporter transgene was confirmed throughout the cochlea from the basal to the apical turn and Western blot analysis indicated significant upregulation of GDNF protein 11 days following virus inoculation. Hearing ability was assessed by sequentially recording compound action potentials (CAP), and the degree of hair cell loss in the organ of Corti was evaluated in specimens stained with rhodamine-phalloidin and Hoechst 33342. On the seventh day of ischemia, the CAP threshold shift and inner hair cell loss were remarkably suppressed in the Ad-GDNF group compared with the control group. These results suggest that adenovirus-mediated overexpression of GDNF is useful for protection against hair cell damage, which otherwise eventually occurs after transient ischemia of the cochlea.


Journal of Inherited Metabolic Disease | 2004

Treatment of lysosomal storage disorders: Cell therapy and gene therapy

Yoshikatsu Eto; Jin-Song Shen; Xing-Li Meng; Toya Ohashi

Summary: Most lysosomal storage diseases have central nervous system (CNS) involvement. No effective treatment is available at present. We investigated the usefulness of brain-directed gene therapy and cell therapy using mouse models of lysosomal storage diseases. For gene therapy to the CNS, a recombinant adenovirus encoding β-galactocerebrosidase gene was injected into the cerebral ventricle of neonatal twitcher mice, a murine model of Krabbe disease. Improvements in neurological symptoms and a prolonged lifespan were observed. Brain activity of β-galactocerebrosidase was increased significantly and the concentration of a cytotoxic metabolite, psychosine, was decreased. Pathological observations of the brain were also improved in treated twitcher mice. For cell therapy to the CNS, a neural stem cell line derived from human fetal brain was genetically engineered to overexpress β-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mice, a model of β-glucuronidase deficiency. Transplanted human neural stem cells were found to integrate and migrate in the host brain and to produce large amounts of β-glucuronidase. Brain contents of the substrate of β-glucuronidase were reduced and widespread clearing of lysosomal storage was observed in treated MPS VII mice. These data suggest that brain-directed gene/cell therapy may be useful in the treatment of neurological alterations in lysosomal storage diseases.


Gene Therapy | 2004

Brain transplantation of genetically modified bone marrow stromal cells corrects CNS pathology and cognitive function in MPS VII mice

Ken Sakurai; Iizuka S; Jin-Song Shen; Xing-Li Meng; Taisuke Mori; Akihiro Umezawa; Toya Ohashi; Yoshikatsu Eto

Current therapies for lysosomal storage diseases (LSDs), enzyme replacement therapy and bone marrow transplantation are effective for visceral organ pathology of LSD, but their effectiveness for brain involvement in LSDs is still a subject of controversy. As an alternative approach, we transplanted genetically modified bone marrow stromal (BMS) cells to lateral ventricle of newborn mucopolysaccharidosis VII (MPS VII) mice. MPS VII is one of LSDs and caused by deficiency of beta-glucuronidase (GUSB), resulting in accumulation of glycosaminoglycans (GAGs) in brain. At 2 weeks after transplantation, the GUSB enzyme-positive cells were identified in olfactory bulb, striatum and cerebral cortex, and the enzymatic activities in various brain areas increased. The GAGs contents in brain were reduced to near normal level at 4 weeks after transplantation. Although GUSB activity declined to homozygous level after 8 weeks, the reduction of GAGs persisted for 16 weeks. Microscopic examination indicated that the lysosomal distention was not found in treated animal brain. Cognitive function in MPS VII animals as evaluated by Morris Water Maze test in treated mice showed a marked improvement over nontreated animals. Brain transplantation of genetically modified BMS cells appears to be a promising approach to treat diffuse CNS involvement of LSDs.


Journal of Gene Medicine | 2004

Widespread gene transduction to the central nervous system by adenovirus in utero: implication for prenatal gene therapy to brain involvement of lysosomal storage disease

Jin-Song Shen; Xing-Li Meng; Hiroshi Maeda; Toya Ohashi; Yoshikatsu Eto

In some lysosomal storage diseases, considerable alterations of the central nervous system (CNS) occur prior to birth and neurodegeneration progresses rapidly soon after birth causing early death in patients. No effective treatment is available after birth. Treatment may need to be initiated before birth to prevent the onset or progression of neurological changes and thereby irreversible brain damage. The aim of this study is to investigate the feasibility and effectiveness of brain‐directed prenatal gene therapy for lysosomal storage diseases.


Journal of Neuroscience Research | 2002

Establishment and characterization of spontaneously immortalized Schwann cells from murine model of globoid cell leukodystrophy (twitcher)

Jin-Song Shen; Kazuhiko Watabe; Xing-Li Meng; Hiroyuki Ida; Toya Ohashi; Yoshikatsu Eto

The twitcher mouse is a murine model of human globoid cell leukodystrophy (GLD; Krabbe disease) caused by a genetic defect in the activity of galactosylceramidase (GALC). An accumulation of cytotoxic metabolite, galactosylsphingosine (psychosine), in myelin forming cells (oligodendrocytes and Schwann cells) of the twitcher mouse as well as patients with GLD has been suggested to cause dysfunction of these cells and subsequent demyelination in the central and peripheral nervous system. To investigate further the cellular pathomechanism of GLD, we established spontaneously immortalized Schwann cell lines from the twitcher mouse. Long‐term cultures of Schwann cells derived from dorsal root ganglia and consecutive peripheral nerves of 3‐week‐old twitcher mice were maintained for 6 months, and spontaneously developed colonies were expanded further and characterized. One of the cell lines, designated TwS1, showed distinct Schwann cell phenotypes, was passaged twice a week and maintained for over 10 months without phenotypic alterations. The TwS1 cells had a nonsense mutation in the GALC genome, and showed markedly reduced GALC activity and elevated psychosine levels. Ultrastructurally, varieties of cytoplasmic inclusions were demonstrated in TwS1 cells. When TwS1 cells were infected with a retrovirus vector encoding GALC, GALC activity was markedly increased and psychosine levels were significantly decreased. These immortalized Schwann cells can be useful in studies on the nervous system lesions in GLD.


Journal of Gene Medicine | 2005

Widespread and highly persistent gene transfer to the CNS by retrovirus vector in utero: implication for gene therapy to Krabbe disease.

Jin-Song Shen; Xing-Li Meng; Takashi Yokoo; Ken Sakurai; Kazuhiko Watabe; Toya Ohashi; Yoshikatsu Eto

Brain‐directed prenatal gene therapy may benefit some lysosomal storage diseases that affect the central nervous system (CNS) before birth. Our previous study showed that intrauterine introduction of recombinant adenoviruses into cerebral ventricles results in efficient gene transfer to the CNS in the mouse. However, transgene expression decreased with time due to the non‐integrative property of adenoviral vectors. In this study, in order to obtain permanent gene transduction, we investigated the feasibility of retrovirus‐mediated in utero gene transduction.


Stem Cells Translational Medicine | 2017

Metabolomic Profiling of Pompe Disease-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals That Oxidative Stress Is Associated With Cardiac and Skeletal Muscle Pathology

Yohei Sato; Hiroshi Kobayashi; Takashi Higuchi; Yohta Shimada; Hiroyuki Ida; Toya Ohashi

Pompe disease (PD) is a lysosomal storage disease that is caused by a deficiency of the acid α‐glucosidase, which results in glycogen accumulation in the lysosome. The major clinical symptoms of PD include skeletal muscle weakness, respiratory failure, and cardiac hypertrophy. Based on its severity and symptom onset, PD is classified into infantile and late‐onset forms. Lysosomal accumulation of glycogen can promote many types of cellular dysfunction, such as autophagic dysfunction, endoplasmic reticulum stress, and abnormal calcium signaling within skeletal muscle. However, the disease mechanism underlying PD cardiomyopathy is not fully understood. Several researchers have shown that PD induced pluripotent stem cell (iPSC)‐derived cardiomyocytes successfully replicate the disease phenotype and are useful disease models. We have analyzed the metabolomic profile of late‐onset PD iPSC‐derived cardiomyocytes and found that oxidative stress and mitochondrial dysfunction are likely associated with cardiac complications. Furthermore, we have validated that these disease‐specific changes were also observed in the cardiomyocytes and skeletal muscle of a genetically engineered murine PD model. Oxidative stress may contribute to skeletal muscle and cardiomyocyte dysfunction in PD mice; however, NF‐E2‐related factor 2 was downregulated in cardiomyocytes and skeletal muscle, despite evidence of oxidative stress. We hypothesized that oxidative stress and an impaired antioxidative stress response mechanism may underlie the molecular pathology of late‐onset PD. Stem Cells Translational Medicine 2017;6:31–39


Molecular therapy. Methods & clinical development | 2016

TFEB overexpression promotes glycogen clearance of Pompe disease iPSC-derived skeletal muscle

Yohei Sato; Hiroshi Kobayashi; Takashi Higuchi; Yohta Shimada; Hiroyuki Ida; Toya Ohashi

Pompe disease (PD) is a lysosomal disorder caused by acid α-glucosidase (GAA) deficiency. Progressive muscular weakness is the major symptom of PD, and enzyme replacement therapy can improve the clinical outcome. However, to achieve a better clinical outcome, alternative therapeutic strategies are being investigated, including gene therapy and pharmacological chaperones. We previously used lentiviral vector-mediated GAA gene transfer in PD patient-specific induced pluripotent stem cells. Some therapeutic efficacy was observed, although glycogen accumulation was not normalized. Transcription factor EB is a master regulator of lysosomal biogenesis and autophagy that has recently been associated with muscular pathology, and is now a potential therapeutic target in PD model mice. Here, we differentiated skeletal muscle from PD patient-specific induced pluripotent stem cells by forced MyoD expression. Lentiviral vector-mediated GAA and transcription factor EB gene transfer independently improved GAA enzyme activity and reduced glycogen content in skeletal muscle derived from PD-induced pluripotent stem cells. Interestingly, GAA and transcription factor EB cooperatively improved skeletal muscle pathology, both biochemically and morphologically. Thus, our findings show that abnormal lysosomal biogenesis is associated with the muscular pathology of PD, and transcription factor EB gene transfer is effective as an add-on strategy to GAA gene transfer.


Molecular Genetics and Metabolism | 2017

Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2-sulfatase in mucopolysaccharidosis type II

Hiroo Hoshina; Yohta Shimada; Takashi Higuchi; Hiroshi Kobayashi; Hiroyuki Ida; Toya Ohashi

Small molecules called pharmacological chaperones have been shown to improve the stability, intracellular localization, and function of mutated enzymes in several lysosomal storage diseases, and proposed as promising therapeutic agents for them. However, a chaperone compound for mucopolysaccharidosis type II (MPS II), which is an X-linked lysosomal storage disorder characterized by a deficiency of iduronate-2-sulfatase (IDS) and the accumulation of glycosaminoglycans (GAGs), has still not been developed. Here we focused on the Δ-unsaturated 2-sulfouronic acid-N-sulfoglucosamine (D2S0), which is a sulfated disaccharide derived from heparin, as a candidate compound for a pharmacological chaperone for MPS II, and analyzed the chaperone effect of the saccharide on IDS by using recombinant protein and cells expressing mutated enzyme. When D2S0 was incubated with recombinant human IDS (rhIDS) in vitro, the disaccharide attenuated the thermal degeneration of the enzyme. This effect of D2S0 on the thermal degeneration of rhIDS was enhanced in a dose-dependent manner. D2S0 also increased the residual activity of mutant IDS in patient fibroblasts. Furthermore, D2S0 improved the enzyme activity of IDS mutants derived from six out of seven different mutations in HEK293T cells transiently expressing them. These results indicate that D2S0 is a potential pharmacological chaperone for MPS II.

Collaboration


Dive into the Toya Ohashi's collaboration.

Top Co-Authors

Avatar

Yoshikatsu Eto

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jin-Song Shen

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Ida

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xing-Li Meng

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yohta Shimada

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kazuhiko Watabe

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Shiba

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Kobayashi

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Katsuhiko Yanaga

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tadashi Uwagawa

Jikei University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge