Tracey L. Bonfield
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracey L. Bonfield.
Journal of Clinical Investigation | 1997
Anna M. van Heeckeren; Ronald W. Walenga; Michael W. Konstan; Tracey L. Bonfield; Pamela B. Davis; Thomas Ferkol
In cystic fibrosis (CF), defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells and submucosal glands results in chronic pulmonary infection with Pseudomonas aeruginosa. The pulmonary infection incites an intense host inflammatory response, causing progressive suppurative pulmonary disease. Mouse models of CF, however, fail to develop pulmonary disease spontaneously. We examined the effects of bronchopulmonary infection on mice homozygous for the S489X mutation of the CFTR gene using an animal model of chronic Pseudomonas endobronchial infection. Slurries of sterile agarose beads or beads containing a clinical isolate of mucoid P. aeruginosa were instilled in the right lung of normal or CF mice. The mortality of CF mice inoculated with Pseudomonas-laden beads was significantly higher than that of normal animals: 82% of infected CF mice, but only 23% of normal mice, died within 10 d of infection (P = 0.023). The concentration of inflammatory mediators, including TNF-alpha, murine macrophage inflammatory protein-2, and KC/N51, in bronchoalveolar lavage fluid in CF mice 3 d after infection and before any mortality, was markedly elevated compared with normal mice. This inflammatory response also correlated with weight loss observed in both CF and normal littermates after inoculation. Thus, this model may permit examination of the relationship of bacterial infections, inflammation, and the cellular and genetic defects in CF.
The Journal of Allergy and Clinical Immunology | 1999
Tracey L. Bonfield; Michael W. Konstan; Melvin Berger
BACKGROUND Reports that lung inflammation in patients with cystic fibrosis (CF) might precede infection raise the possibility that the excessive inflammatory response in lungs of patients with CF might be directly related to defects in epithelial cell cystic fibrosis transmembrane regulator. OBJECTIVE We sought to determine the relationship of epithelial cell cytokine production to CF lung disease. METHODS Immunofluorescence and cultures of freshly obtained bronchial epithelial cells and ELISA for IL-10, IL-8, and IL-6 were used to study alterations in epithelial cell cytokine production. RESULTS Fresh bronchial epithelial cells from healthy control subjects (HCs) secreted 98 +/- 20 pg/mL of the anti-inflammatory cytokine IL-10 when placed in primary culture in vitro but little or no IL-8 or IL-6. In contrast, fresh epithelial cells from patients with CF did not secrete detectable IL-10 but produced 38 +/- 17 pg/mL IL-8 and 40 +/- 17 pg/mL IL-6. These data correlated very well with the immunofluorescence data. The correlation between the immunofluorescent staining of fresh bronchial epithelial cells from both the HCs and patients with CF and the concentrations of cytokines in epithelial lining fluid suggests a reciprocal relationship between anti-inflammatory (IL-10) and proinflammatory (IL-6 and IL-8) cytokine production by the epithelial cells in HCs versus patients with CF. CONCLUSIONS Alterations in epithelial cell cytokine production in the lungs of patients with CF may contribute to the excessive local inflammation.
Frontiers in Immunology | 2013
Amy M. DiMarino; Arnold I. Caplan; Tracey L. Bonfield
The advent of mesenchymal stem cell (MSC)-based therapies for clinical therapeutics has been an exciting and new innovation for the treatment of a variety of diseases associated with inflammation, tissue damage, and subsequent regeneration and repair. Application-based ability to measure MSC potency and fate of the cells post-MSC therapy are the variables that confound the use of MSCs therapeutics in human diseases. An evaluation of MSC function and applications with attention to detail in the preparation as well as quality control and quality assurance are only as good as the assays that are developed. In vivo measures of efficacy and potency require an appreciation of the overall pathophysiology of the model and standardization of outcome measures. The new concepts of how MSC’s participate in the tissue regeneration and wound repair process and further, how this is impacted by estimates of efficacy and potency are important new topics. In this regard, this chapter will review some of the in vitro and in vivo assays for MSC function and activity and their application to the clinical arena.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2010
Tracey L. Bonfield; Mary F Koloze; Donald P. Lennon; Brandon Zuchowski; Sung Eun Yang; Arnold Caplan
Allogeneic human mesenchymal stem cells (hMSCs) introduced intravenously can have profound anti-inflammatory activity resulting in suppression of graft vs. host disease as well as regenerative events in the case of stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of these diseases. hMSCs produce bioactive factors that provide molecular cuing for: 1) immunosuppression of T cells; 2) antiscarring; 3) angiogenesis; 4) antiapoptosis; and 5) regeneration (i.e., mitotic for host-derived progenitor cells). Studies have shown that hMSCs have profound effects on the immune system and are well-tolerated and therapeutically active in immunocompetent rodent models of multiple sclerosis and stroke. Furthermore, intravenous administration of MSCs results in pulmonary localization. Asthma is a major debilitating pulmonary disease that impacts in excess of 150 million people in the world with uncontrolled asthma potentially leading to death. In addition, the socioeconomic impact of asthma-associated illnesses at the pediatric and adult level are in the millions of dollars in healthcare costs and lost days of work. hMSCs may provide a viable multiaction therapeutic for this inflammatory lung disease by secreting bioactive factors or directing cellular activity. Our studies show the effectiveness and specificity of the hMSCs on decreasing chronic airway inflammation associated with the murine ovalbumin model of asthma. In addition, the results from these studies verify the in vivo immunoeffectiveness of hMSCs in rodents and support the potential therapeutic use of hMSCs for the treatment of airway inflammation associated with chronic asthma.
Journal of Biomaterials Science-polymer Edition | 1996
James M. Anderson; Nicholas P. Ziats; Ahmad Azeez; Michael R. Brunstedt; Steven Stack; Tracey L. Bonfield
Static and dynamic human blood adsorption studies on polydimethylsiloxane, PDMS, and silicone rubber show that these materials are similar, but not identical, in their protein adsorption behavior. Fibrinogen, immunoglobulin G, and albumin were the predominant proteins identified on the material surfaces with fibronectin, Hageman factor (factor XII), and factor VIII/vWF adsorbing at intermediate levels. While the protein adsorption characteristics for the two materials were similar, higher levels of the respective proteins were identified on silicone rubber compared to PDMS. Monocytes/macrophages incubated on PDMS, silicone rubber and low density polyethylene, LDPE, with or without protein adsorption produced variable levels of IL-1 beta, IL-6 and TNF-alpha dependent on the polymer and adsorbed protein. PDMS showed lower levels of the cytokines when compared to the polystyrene control and polyethylene. Protein preadsorption on the PDMS, polystyrene, and LDPE surfaces showed lower levels of cytokines when compared to the respective quantities produced with no protein adsorption suggesting a passivating effect by the protein adsorption phenomenon on monocyte/macrophage activation. Preadsorption of IgG, fibrinogen or fibronectin decreased the quantitative expression of IL-1 beta but increased the functional activity in the thymocyte proliferation assay indicating the presence of monocyte/macrophage activation products which either downregulated the activity of IL-1 beta or upregulated thymocyte proliferation in an independent fashion.
Gastroenterology | 2014
Florian Rieder; Ilche T. Nonevski; Jie Ma; Zhufeng Ouyang; Gail West; Cheryl A. Protheroe; Giovanni DePetris; Anja Schirbel; James Lapinski; John R. Goldblum; Tracey L. Bonfield; Rocio Lopez; Karen M. Harnett; James J. Lee; Ikuo Hirano; Gary W. Falk; Piero Biancani; Claudio Fiocchi
BACKGROUND & AIMS Patients with eosinophilic esophagitis (EoE) often become dysphagic from the combination of organ fibrosis and motor abnormalities. We investigated mechanisms of dysphagia, assessing the response of human esophageal fibroblasts (HEFs), human esophageal muscle cells (HEMCs), and esophageal muscle strips to eosinophil-derived products. METHODS Biopsy specimens were collected via endoscopy from the upper, middle, and lower thirds of the esophagus of 18 patients with EoE and 21 individuals undergoing endoscopy for other reasons (controls). Primary cultures of esophageal fibroblasts and muscle cells were derived from 12 freshly resected human esophagectomy specimens. Eosinophil distribution was investigated by histologic analyses of full-thickness esophageal tissue. Active secretion of EoE-related mediators was assessed from medium underlying mucosal biopsy cultures. We quantified production of fibronectin and collagen I by HEF and HEMC in response to eosinophil products. We also measured the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by, and adhesion of human eosinophils to, HEFs and HEMCs. Eosinophil products were tested in an esophageal muscle contraction assay. RESULTS Activated eosinophils were present in all esophageal layers. Significantly higher concentrations of eosinophil-related mediators were secreted spontaneously in mucosal biopsy specimens from patients with EoE than controls. Exposure of HEFs and HEMCs to increasing concentrations of eosinophil products or co-culture with eosinophils caused HEFs and HEMCs to increase secretion of fibronectin and collagen I; this was inhibited by blocking transforming growth factor β1 and p38 mitogen-activated protein kinase signaling. Eosinophil binding to HEFs and HEMCs increased after incubation of mesenchymal cells with eosinophil-derived products, and decreased after blockade of transforming growth factor β1 and p38 mitogen-activated protein kinase blockade. Eosinophil products reduced electrical field-induced contraction of esophageal muscle strips, but not acetylcholine-induced contraction. CONCLUSIONS In an analysis of tissues samples from patients with EoE, we linked the presence and activation state of eosinophils in EoE with altered fibrogenesis and motility of esophageal fibroblasts and muscle cells. This process might contribute to the development of dysphagia.
Journal of Lipid Research | 2007
Mary Jane Thomassen; Barbara P. Barna; Achut G. Malur; Tracey L. Bonfield; Carol Farver; Anagha Malur; Heidi Dalrymple; Mani S. Kavuru; Maria Febbraio
Patients with pulmonary alveolar proteinosis (PAP) display impaired surfactant clearance, foamy, lipid-filled alveolar macrophages, and increased cholesterol metabolites within the lung. Neutralizing autoantibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) are also present, resulting in virtual GM-CSF deficiency. We investigated ABCG1 and ABCA1 expression in alveolar macrophages of PAP patients and GM-CSF knockout (KO) mice, which exhibit PAP-like pulmonary pathology and increased pulmonary cholesterol. Alveolar macrophages from both sources displayed a striking similarity in transporter gene dysregulation, consisting of deficient ABCG1 accompanied by highly increased ABCA1. Peroxisome proliferator-activated receptor γ (PPARγ), a known regulator of both transporters, was deficient, as reported previously. In contrast, the liver X receptor α, which also upregulates both transporters, was highly increased. GM-CSF treatment increased ABCG1 expression in macrophages in vitro and in PAP patients in vivo. Overexpression of PPARγ by lentivirus-PPARγ transduction of primary alveolar macrophages, or activation by rosiglitazone, also increased ABCG1 expression. These results suggest that ABCG1 deficiency in PAP and GM-CSF KO alveolar macrophages is attributable to the absence of a GM-CSF-mediated PPARγ pathway. These findings document the existence of ABCG1 deficiency in human lung disease and highlight a critical role for ABCG1 in surfactant homeostasis.
Journal of Leukocyte Biology | 2012
Tracey L. Bonfield; Craig A. Hodges; Calvin U. Cotton; Mitchell L. Drumm
The absence or reduction of CFTR function causes CF and results in a pulmonary milieu characterized by bacterial colonization and unresolved inflammation. The ineffectiveness at controlling infection by species such as Pseudomonas aeruginosa suggests defects in innate immunity. Macrophages, neutrophils, and DCs have all been shown to express CFTR mRNA but at low levels, raising the question of whether CFTR has a functional role in these cells. Bone marrow transplants between CF and non‐CF mice suggest that these cells are inherently different; we confirm this observation using conditional inactivation of Cftr in myeloid‐derived cells. Mice lacking Cftr in myeloid cells overtly appear indistinguishable from non‐CF mice until challenged with bacteria instilled into the lungs and airways, at which point, they display survival and inflammatory profiles intermediate in severity as compared with CF mice. These studies demonstrate that Cftr is involved directly in myeloid cell function and imply that these cells contribute to the pathophysiological phenotype of the CF lung.
Journal of Inflammation | 2010
Tracey L. Bonfield; Mary T Nolan; Donald P. Lennon; Arnold I. Caplan
Allogeneic human mesenchymal stem cells (hMSCs) can suppress graft versus host disease (GvHD) and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSCs can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma.
Journal of Immunology | 2002
Jindrich Soltys; Tracey L. Bonfield; James F. Chmiel; Melvin Berger
Alveolar macrophages are poor APCs that only minimally express B7 costimulatory molecules. Because our previous data suggest that bronchial epithelial cells constitutively secrete IL-10, and IL-10 inhibits B7 expression in vitro, we hypothesized that this IL-10 is responsible for suppressing B7 expression on macrophages that enter the airways. Furthermore, because we have shown that cystic fibrosis (CF) lungs are deficient in IL-10, we hypothesized that bronchoalveolar macrophages (BALMs) from cystic fibrosis transmembrane conductance regulator (CFTR)−/− as well as IL-10−/− mice might express increased B7. Immunofluorescence for B7 was positive on BALMs from CF patients and CFTR−/− and IL-10−/− mice, but was negative on controls. FACS showed that 63.9% of BALMs from IL-10−/− mice were B7-1 positive, as were 67.4% of BALMs from CFTR−/− mice, whereas <7% of BALMs from wild-type controls were positive. Using BALMs to costimulate splenic T cells with anti-CD3 as a mitogen showed 9202 ± 2107 cpm [3H]thymidine incorporation for BALMs from IL-10−/− mice and 4082 ± 1036 cpm for BALMs from CFTR−/− mice, but <200 cpm with BALMs from either type of +/+ mouse. Treatment of CFTR−/− mice with recombinant mouse IL-10 reduced the B7 expression and costimulatory activity of the BALMs. These data suggest that the IL-10 secreted in the healthy lung may be responsible for the absence of B7 and poor costimulatory activity of BALMs and that reductions of pulmonary IL-10 in CF may enhance B7 expression and local immune responses.