Tracie Foote
John Innes Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracie Foote.
Nature | 2006
Simon Griffiths; Rebecca Sharp; Tracie Foote; Isabelle Bertin; Michael Wanous; S. M. Reader; Isabelle Colas; Graham Moore
The foundation of western civilization owes much to the high fertility of bread wheat, which results from the stability of its polyploid genome. Despite possessing multiple sets of related chromosomes, hexaploid (bread) and tetraploid (pasta) wheat both behave as diploids at meiosis. Correct pairing of homologous chromosomes is controlled by the Ph1 locus. In wheat hybrids, Ph1 prevents pairing between related chromosomes. Lack of Ph1 activity in diploid relatives of wheat suggests that Ph1 arose on polyploidization. Absence of phenotypic variation, apart from dosage effects, and the failure of ethylmethane sulphonate treatment to yield mutants, indicates that Ph1 has a complex structure. Here we have localized Ph1 to a 2.5-megabase interstitial region of wheat chromosome 5B containing a structure consisting of a segment of subtelomeric heterochromatin that inserted into a cluster of cdc2-related genes after polyploidization. The correlation of the presence of this structure with Ph1 activity in related species, and the involvement of heterochromatin with Ph1 (ref. 6) and cdc2 genes with meiosis, makes the structure a good candidate for the Ph1 locus.
Annals of Botany | 2008
Nadia S. Al-Kaff; Emilie Knight; Isabelle Bertin; Tracie Foote; Nicola Hart; Simon Griffiths; Graham Moore
Background and Aims Understanding Ph1, a dominant homoeologous chromosome pairing suppressor locus on the long arm of chromosome 5B in wheat Triticum aestivum L., is the core of the investigation in this article. The Ph1 locus restricts chromosome pairing and recombination at meiosis to true homologues. The importance of wheat as a crop and the need to exploit its wild relatives as donors for economically important traits in wheat breeding programmes is the main drive to uncover the mechanism of the Ph1 locus and regulate its activity. Methods Following the molecular genetic characterization of the Ph1 locus, five additional deletion mutants covering the region have been identified. In addition, more bacterial artificial chromosomes (BACs) were sequenced and analysed to elucidate the complexity of this locus. A semi-quantitative RT–PCR was used to compare the expression profiles of different genes in the 5B region containing the Ph1 locus with their homoeologues on 5A and 5D. PCR products were cloned and sequenced to identify the gene from which they were derived. Key Results Deletion mutants and expression profiling of genes in the region containing the Ph1 locus on 5B has further restricted Ph1 to a cluster of cdk-like genes. Bioinformatic analysis of the cdk-like genes revealed their close homology to the checkpoint kinase Cdk2 from humans. Cdk2 is involved in the initiation of replication and is required in early meiosis. Expression profiling has revealed that the cdk-like gene cluster is unique within the region analysed on 5B in that these genes are transcribed. Deletion of the cdk-like locus on 5B results in activation of transcription of functional cdk-like copies on 5A and 5D. Thus the cdk locus on 5B is dominant to those on 5A and 5D in determining the overall activity, which will be dependent on a complex interplay between transcription from non-functional and functional cdk-like genes. Conclusions The Ph1 locus has been defined to a cdk-like gene cluster related to Cdk2 in humans, a master checkpoint gene involved in the initiation of replication and required for early meiosis.
Theoretical and Applied Genetics | 1998
L.-J. Qu; Tracie Foote; Michael Roberts; Tracy Money; Luis Aragón-Alcaide; J. W. Snape; Graham Moore
The amplified fragment length polymorphism (AFLP) technique was used to isolate DNA sequences present in the euploid wheat Chinese Spring but not in the Chinese Spring ph1b mutant (which has a deletion of the Ph1 gene, a suppressor of homoeologous chromosome pairing). The polymorphic DNA fragments identified by AFLP were then cloned, sequenced, and used to design two primer pairs. These primers were used in a PCR-based assay to specifically amplify products from the Chinese Spring euploid but not from the ph1b mutant. This PCR assay can be carried out from extracted genomic DNA or directly from alkaline-treated wheat leaves, and the reaction products can be scored on a plus-minus basis, making the screening amenable to automation. The reliability of the assay was tested using a F1-derived doubled-haploid population of 55 lines which segregate for the ph1b deletion. This PCR-screening technique is less time and labour consuming, and more accurate and reliable, than cytologically based conventional methods.
Chromosoma | 1997
Graham Moore; Michael Roberts; Luis Aragón-Alcaide; Tracie Foote
Comparative genome analysis enables the sites of centromeres, telomeres and nucleolar organiser regions to be aligned with borders that define the sets of linked genes conserved across the cereal genomes. This provides a basis for studying cereal genome evolution.
Chromosome Research | 1995
S. Abbo; R. P. Dunford; Tracie Foote; S. M. Reader; R. B. Flavell; Graham Moore
Sequences homologous to the retro-element BIS-1 and the stem-loop repeat Hi-10 are present in the genomes of a number of cereal species. A detailed characterization of these elements indicated that they are non-randomly organized in the genomes of at least two of these species, namely barley and rye. In contrast to the BIS-1 retro-elements, the stem-loop repeats are also non-randomly organized into discrete domains in interphase nuclei from barley and rye. Features of the organization of these repeats along chromosomes and within interphase nuclei of rye, barley and rice are discussed.
Theoretical and Applied Genetics | 2009
Isabelle Bertin; Lesley Fish; Tracie Foote; Emilie Knight; J. W. Snape; Graham Moore
Breeders can force sexual hybridisation between wheat and related grass species to produce interspecific hybrids containing a dihaploid set of wheat and related chromosomes. This facilitates the introgression of desirable genes into wheat from the secondary gene pool. However, most elite European wheat varieties carry genes that suppress crossability, making the transfer of novel traits from exotic germplasm into elite wheat varieties difficult or impossible. Previous studies have identified at least five crossability loci in wheat. Here, the crossability locus with the largest effect, Kr1 on chromosome arm 5BL, was fine-mapped by developing a series of recombinant substitution lines in which the genome of the normally non-crossable wheat variety ‘Hobbit sib’ carries a recombinant 5BL chromosome arm containing segments from the crossable variety ‘Chinese Spring’. These recombinant lines were scored for their ability to cross with rye over four seasons. Analysis revealed at least two regions on 5BL affecting crossability, including the Kr1 locus. However, the ability to set seed is highly dependent on prevailing environmental conditions. Typically, even crossable wheat lines exhibit little or no seed set when crossed with rye in winter, but show up to 90% seed set from similar crosses made in summer. By recombining different combinations of the two regions affecting crossability, wheat lines that consistently exhibit up to 50% seed set, whether crossed in the UK winter or summer conditions, were generated, thus creating a very important tool for increasing the efficiency of alien wheat transfer programmes.
Nature Biotechnology | 1994
Nori Kurata; Graham Moore; Yoshiaki Nagamura; Tracie Foote; Masahiro Yano; Yuzo Minobe; M. D. Gale
Trends in Genetics | 1995
Graham Moore; Tracie Foote; Tim Helentjaris; Katrien M. Devos; Nori Kurata; M. D. Gale
Genetics | 1999
Michael Roberts; S. M. Reader; Caroline Dalgliesh; T. E. Miller; Tracie Foote; Lesley Fish; J. W. Snape; Graham Moore
Cereal Research Communications | 2003
S. Allouis; Graham Moore; A. Bellec; R. Sharp; P. Faivre Rampant; K. Mortimer; S. Pateyron; Tracie Foote; Simon Griffiths; M. Caboche; Boulos Chalhoub