Tracie L. Haines
Appalachian State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracie L. Haines.
Journal of Strength and Conditioning Research | 2009
Jeffrey M. McBride; Daniel Blow; Tyler J. Kirby; Tracie L. Haines; Andrea M Dayne; N. Travis Triplett
McBride, JM, Blow, D, Kirby, TJ, Haines, TL, Dayne AM, and Triplett, NT. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res 23(6): 1633-1636, 2009-The purpose of this investigation was to examine the relationship between maximal squat strength and sprinting times. Seventeen Division I-AA male football athletes (height = 1.78 ± 0.04 m, body mass [BM] = 85.9 ± 8.8 kg, body mass index [BMI] = 27.0 ± 2.6 kg/m2, 1 repetition maximum [1RM] = 166.5 ± 34.1 kg, 1RM/BM = 1.94 ± 0.33) participated in this investigation. Height, weight, and squat strength (1RM) were assessed on day 1. Within 1 week, 5, 10, and 40 yard sprint times were assessed. Squats were performed to a 70° knee angle and values expressed relative to each subjects BM. Sprints were performed on a standard outdoor track surface with timing gates placed at the previously mentioned distances. Statistically significant (p ≤ 0.05) correlations were found between squat 1RM/BM and 40 yard sprint times (r = −0.605, p = 0.010, power = 0.747) and 10 yard sprint times (r = −0.544, p = 0.024, power = 0.626). The correlation approached significance between 5 yard sprint times and 1RM/BM (r = −0.4502, p = 0.0698, power = 0.4421). Subjects were then divided into those above 1RM/BM of 2.10 and below 1RM/BM of 1.90. Subjects with a 1RM/BM above 2.10 had statistically significantly lower sprint times at 10 and 40 yards in comparison with those subjects with a 1RM/BM ratio below 1.90. This investigation provides additional evidence of the possible importance of maximal squat strength relative to BM concerning sprinting capabilities in competitive athletes.
Journal of Sports Sciences | 2011
Jeffrey M. McBride; Tracie L. Haines; Tyler J. Kirby
Abstract Nine males (age 24.7 ± 2.1 years, height 175.3 ± 5.5 cm, body mass 80.8 ± 7.2 kg, power clean 1-RM 97.1 ± 6.36 kg, squat 1-RM = 138.3 ± 20.9 kg) participated in this study. On day 1, the participants performed a one-repetition maximum (1-RM) in the power clean and the squat. On days 2, 3, and 4, participants performed the power clean, squat or jump squat. Loading for the power clean ranged from 30% to 90% of the participants power clean 1-RM and loading for the squat and jump squat ranged from 0% to 90% of the participants squat 1-RM, all at 10% increments. Peak force, velocity, and power were calculated for the bar, body, and system (bar + body) for all power clean, squat, and jump squat trials. Results indicate that peak power for the bar, body, and system is differentially affected by load and movement pattern. When using the power clean, squat or jump squat for training, the optimal load in each exercise may vary. Throwing athletes or weightlifters may be most concerned with bar power, but jumpers or sprinters may be more concerned with body or system power. Thus, the exercise type and load vary according to the desired stimulus.
Journal of Strength and Conditioning Research | 2013
Adam M. Jetton; Marcus M. Lawrence; Marco Meucci; Tracie L. Haines; Scott R. Collier; David Morris; Alan C. Utter
Abstract Jetton, AM, Lawrence, MM, Meucci, M, Haines, TL, Collier, SR, Morris, DM, and Utter, AC. Dehydration and acute weight gain in mixed martial arts fighters before competition. J Strength Cond Res 27(5): 1322–1326, 2013—The purpose of this study was to characterize the magnitude of acute weight gain (AWG) and dehydration in mixed martial arts (MMA) fighters before competition. Urinary measures of hydration status and body mass were determined approximately 24 hours before and then again approximately 2 hours before competition in 40 MMA fighters (mean ± SE, age: 25.2 ± 0.65 years, height: 1.77 ± 0.01 m, body mass: 75.8 ± 1.5 kg). The AWG was defined as the amount of body weight the fighters gained in the approximately 22-hour period between the official weigh-in and the actual competition. On average, the MMA fighters gained 3.40 ± 2.2 kg or 4.4% of their body weight in the approximately 22-hour period before competition. Urine specific gravity significantly decreased (p < 0.001) from 1.028 ± 0.001 to 1.020 ± 0.001 during the approximately 22-hour rehydration period. Results demonstrated that 39% of the MMA fighters presented with a Usg of >1.021 immediately before competition indicating significant or serious dehydration. The MMA fighters undergo significant dehydration and fluctuations in body mass (4.4% avg.) in the 24-hour period before competition. Urinary measures of hydration status indicate that a significant proportion of MMA fighters are not successfully rehydrating before competition and subsequently are competing in a dehydrated state. Weight management guidelines to prevent acute dehydration in MMA fighters are warranted to prevent unnecessary adverse health events secondary to dehydration.
Journal of Strength and Conditioning Research | 2010
Jeffrey M. McBride; Jared W. Skinner; Patrick C Schafer; Tracie L. Haines; Tyler J. Kirby
McBride, JM, Skinner, JW, Schafer, PC, Haines, TL, and Kirby, TJ. Comparison of kinetic variables and muscle activity during a squat vs. a box squat. J Strength Cond Res 24(12): 3195-3199, 2010-The purpose of this investigation was to determine if there was a difference in kinetic variables and muscle activity when comparing a squat to a box squat. A box squat removes the stretch-shortening cycle component from the squat, and thus, the possible influence of the box squat on concentric phase performance is of interest. Eight resistance trained men (Height: 179.61 ± 13.43 cm; Body Mass: 107.65 ± 29.79 kg; Age: 24.77 ± 3.22 years; 1 repetition maximum [1RM]: 200.11 ± 58.91 kg) performed 1 repetition of squats and box squats using 60, 70, and 80% of their 1RM in a randomized fashion. Subjects completed the movement while standing on a force plate and with 2 linear position transducers attached to the bar. Force and velocity were used to calculate power. Peak force and peak power were determined from the force-time and power-time curves during the concentric phase of the lift. Muscle activity (electromyography) was recorded from the vastus lateralis, vastus medialis, biceps femoris, and longissimus. Results indicate that peak force and peak power are similar between the squat and box squat. However, during the 70% of 1RM trials, the squat resulted in a significantly lower peak force in comparison to the box squat (squat = 3,269 ± 573 N, box squat = 3,364 ± 575 N). In addition, during the 80% of 1RM trials, the squat resulted in significantly lower peak power in comparison to the box squat (squat = 2,050 ± 486 W, box squat = 2,197 ± 544 W). Muscle activity was generally higher during the squat in comparison to the box squat. In conclusion, minimal differences were observed in kinetic variables and muscle activity between the squat and box squat. Removing the stretch-shortening cycle during the squat (using a box) appears to have limited negative consequences on performance.
Journal of Sports Sciences | 2011
Tracie L. Haines; Jeffrey M. McBride; N. Travis Triplett; Jared W. Skinner; Kimberly R. Fairbrother; Tyler J. Kirby
Abstract The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.
Journal of Applied Biomechanics | 2011
Tyler J. Kirby; Jeffrey M. McBride; Tracie L. Haines; Andrea M Dayne
International Journal of Sports Physiology and Performance | 2010
Jeffrey M. McBride; Tony R Larkin; Andrea M Dayne; Tracie L. Haines; Tyler J. Kirby
Amino Acids | 2012
Tyler J. Kirby; N. Travis Triplett; Tracie L. Haines; Jared W. Skinner; Kimberly R. Fairbrother; Jeffrey M. McBride
International Journal of Sports Physiology and Performance | 2010
Jeffrey M. McBride; Tyler J. Kirby; Tracie L. Haines; Jared W. Skinner
Journal of Strength and Conditioning Research | 2010
Tracie L. Haines; Jeffrey M. McBride; Jared W. Skinner; Mark Woodall; Tony R Larkin; Tyler J. Kirby; Andrea M Dayne