Tracy A. Marchant
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracy A. Marchant.
General and Comparative Endocrinology | 1984
N. E. Stacey; Duncan S. MacKenzie; Tracy A. Marchant; L. Kyle; R.E. Peter
White suckers (Catostomus commersoni; Cypriniformes, Teleosteii) spawning in a small stream in central Alberta were captured during different stages of their spawning migrations in 1981 and 1982, blood was sampled, and the fish were examined to determine their reproductive condition. Blood samples were analyzed for gonadotropin (GtH), growth hormone (GH), triiodothyronine (T3), and thyroxine (T4) by radioimmunoassay. GtH levels in both sexes were lowest prior to the onset of spawning, increased significantly in spawning males, females in which germinal vesicle migration had begun, and ovulated females and then dropped significantly in spent fish of both sexes. GH was lowest in prespawning females, increased significantly at ovulation, and remained high in spent females. In contrast, GH levels in males were relatively constant throughout spawning. In both sexes, highest T4 levels were found in prespawning fish, and T4 decreased significantly in spent fish. Although a similar decline was seen in T3 in 1981, in 1982 there were no T3 changes associated with changes in reproductive condition. No significant diurnal variations were detected in the levels of GtH or T3; T4 levels appeared to vary on a diurnal basis in prespawning males only. Spawning activity in both sexes therefore appears to be associated with increases in GtH occurring at ovulation in females and at the initiation of spawning in males. GH levels may also be related to reproductive condition in females, but not in males. The relationship of thyroid hormone levels to reproductive condition is less clear, however, and these levels may reflect both endocrine and environmental influences on thyroid function.
Regulatory Peptides | 1987
Tracy A. Marchant; Robert A. Fraser; P.C. Andrews; R.E. Peter
The effect of various vertebrate somatostatins (SRIF) on basal growth hormone (GH) secretion from goldfish pituitary fragments was studied using an in vitro perifusion system. SRIF-14 caused a rapid and dose-dependent decrease in the rate of GH release from goldfish pituitary fragments. The half-maximal effective dose (ED50) of SRIF-14 was calculated as 1.3 nM following exposure to two minute pulses of increasing concentrations of SRIF-14, whereas the ED50 of SRIF-14 calculated after continuous exposure to sequentially increasing doses of SRIF-14 was 65 nM. This difference suggests that the pituitary fragments were less responsive to SRIF-14 in the latter experiment, possibly as a result of previous exposure to SRIF-14. SRIF-28 was found to be equipotent with SRIF-14 in decreasing basal GH secretion from the goldfish pituitary. In contrast, catfish SRIF-22, a uniquely teleost SRIF isolated from catfish pancreatic islets, did not alter GH secretion. These results provide further support for the hypothesis that SRIF-14 or a very similar molecule functions as a GH release-inhibiting factor in teleosts, indicating that this action of SRIF-14 has been fully conserved throughout vertebrate evolution.
Fish Physiology and Biochemistry | 1989
Tracy A. Marchant; Richard E. Peter
In vivo andin vitro techniques were used to examine the influence of various vertebrate peptides on growth hormone (GH) secretion in the goldfish. Tetradecapeptide somatostatin (SRIF-14) was found to inhibit GH secretionin vitro from perifused pituitary fragments, whereas similar concentrations of a salmonid SRIF peptide (sSRIF-25) did not affect GH secretion from the goldfish pituitary fragments. This indicates that SRIF receptors on the goldfish pituitary are very specific for SRIF-14-like peptides. Salmon gonadotropin (GTH)-releasing hormone (sGnRH) was found to elevate serum GH levels in male goldfish. The dopamine antagonist pimozide alone or injected in combination with sGnRH did not influence serum GH levels, although injection of pimozide alone significantly elevated serum GTH levels, in addition to potentiating the effects of sGnRH on GTH secretion. sGnRH stimulated GH secretion from goldfish pituitary fragmentsin vitro, indicating that sGnRH acts directly at the level of the pituitary to stimulate GH secretion in the goldfish. These results suggest that GnRH may also function as a GH-releasing factor in the goldfish, although the release-inhibitory factors for GH and GTH secretion do appear to be separate and distinct. Two human GH-releasing hormone (hGHRH) peptides were found to be ineffective in altering GH secretionin vitro from the perifused pituitary fragments. Consequently, a role for a mammalian GHRH-like peptide in the hypothalamic regulation of GH secretion in the goldfish remains questionable.
General and Comparative Endocrinology | 1989
Tracy A. Marchant; Joseph G. Dulka; Richard E. Peter
In this study, the relationships between endogenous brain and pituitary immunoreactive somatostatin (irSRIF) and circulating growth hormone (GH) levels in the goldfish were examined using two approaches. First, the amount of irSRIF in extracts of the pituitary gland and various brain regions was measured by radioimmunoassay several times throughout the year and was compared to serum GH levels at each time. The amounts of irSRIF in extracts of the pituitary gland, hypothalamus, and telencephalon were found to be inversely related to seasonal changes in serum GH levels, such that irSRIF was highest in these regions when serum GH levels were lowest (November and February). Conversely, irSRIF in these regions was lower in May, June, and July when serum GH levels were highest. These results suggest that endogenous irSRIF in the pituitary and forebrain may participate in the regulation of seasonal changes in serum GH levels in the goldfish. In extracts from other brain regions (thalamus + midbrain and cerebellum + medulla), some changes in the amount of irSRIF were observed among the various sample times, but these variations were not related to changes in serum GH levels. In a second set of experiments, the origin of irSRIF fibers innervating the goldfish pituitary gland was examined by using brain lesioning techniques to destroy regions of the forebrain known to contain irSRIF perikarya and fibers, and subsequently measuring the amount of irSRIF in the pituitary gland. Lesions in the preoptic area of the forebrain resulted in increased serum GH levels concomitant with a decrease in pituitary irSRIF content. This provides direct evidence that the preoptic area is the origin of a somatostatinergic projection inhibiting GH secretion from the goldfish pituitary. Lesions centered in the nucleus lateral tuberis (NLT) pars anterioris did not influence serum GH levels or the pituitary content of irSRIF. In contrast, more posterior lesions centered in the NLT pars posterioris (NLTp) resulted in a dramatic reduction in the amount of irSRIF in the pituitary. This suggests that the majority of irSRIF projections to the goldfish pituitary pass through the area destroyed by the lesion centered in the NLTp; it is also possible that perikarya within this area may be the origin of at least some of the irSRIF-containing fibers in the goldfish pituitary. Together, results from the present study provide evidence of a functional relationship between circulating levels of GH and endogenous brain and pituitary irSRIF in the goldfish.
Neuroendocrinology | 1985
John P. Chang; Tracy A. Marchant; Alan Frank Cook; Carol S. Nahorniak; Richard E. Peter
The influence of catecholamines on growth hormone (GH) release in female goldfish was investigated by monitoring serum GH levels following injections of drugs known to alter catecholamine synthesis and neural activities. Intraperitoneal (i.p.) injection of 6-hydroxydopamine, a catecholaminergic neurotoxin, or alpha-methyl-p-tyrosine, a catecholamine synthesis inhibitor, decreased serum GH levels. Intraperitoneal injection of L-beta-dihydroxyphenylalanine (L-dopa) increased serum GH concentrations in a dose-dependent manner. The L-dopa-induced increase in serum GH was potentiated by i.p. injection of carbidopa, which would increase the availability of L-dopa to brain tissues by blocking the peripheral conversion of L-dopa to dopamine (DA). These results suggest that L-dopa or one of its catecholamine metabolites acts centrally to increase GH release. Intraventricular (i.v.t.) injection of DA and i.p. injection of apomorphine, a DA agonist that crosses the blood-brain barrier, increased serum GH. Intraperitoneal injection of DA did not alter circulating GH levels in normal fish or fish bearing preoptic lesions that abolish an inhibitory hypothalamic influence on GH release; however, DA increased serum GH in fish which had their blood-brain barrier destroyed by sham operation procedures. These results indicate that DA acts centrally to stimulate GH secretion, possibly by inhibiting the release and/or synthesis of GH release-inhibitory factor. Serum GH concentrations were decreased in a dose-dependent manner by i.p. injection of norepinephrine (NE), whereas i.v.t. injection of NE did not alter serum GH levels. These results indicate that NE acts outside of the blood-brain barrier to decrease serum GH levels in the goldfish, possibly by directly influencing pituitary GH cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Endocrinology | 1989
Tracy A. Marchant; John P. Chang; Carol S. Nahorniak; Richard E. Peter
Journal of Experimental Zoology | 1990
Richard E. Peter; K.L. Yu; Tracy A. Marchant; Paul M. Rosenblum
Journal of Experimental Zoology | 1986
Tracy A. Marchant; Richard E. Peter
Annals of the New York Academy of Sciences | 1987
R.E. Peter; H. R. Habibi; Tracy A. Marchant; Carol S. Nahorniak
Annals of the New York Academy of Sciences | 1987
Joseph G. Dulka; N. E. Stacey; Peter W. Sorensen; G. J. Kraak; Tracy A. Marchant