Tracy A. Stone
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracy A. Stone.
Journal of Biological Chemistry | 2015
Kathrin Bellmann-Sickert; Tracy A. Stone; Bradley E. Poulsen; Charles M. Deber
Background: Helix-helix interactions commonly mediate a host of biological functions in membrane proteins. Results: A stapled peptide sequentially complementary to a helix-helix interaction motif disrupted a bacterial multidrug resistance efflux pump. Conclusion: Stapling membrane-penetrating peptides represents a viable way to target protein-protein interactions within membranes while retaining metabolic stability. Significance: Stapled peptides are prospective therapeutics for inhibiting membrane protein interactions involved in disease states. Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues 90GLALIVAGV98); and (ii) a peptide comprised of the full TM4(85–105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88–100), and then “staple” this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-88VVGLXLIZXGVVV100-KKK-NH2 (X = 2-(4′-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn95 peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88–100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.
Biochimica et Biophysica Acta | 2017
Tracy A. Stone; Charles M. Deber
Membrane proteins play the central roles in a variety of cellular processes, ranging from nutrient uptake and signalling, to cell-cell communication. Their biological functions are directly related to how they fold and assemble; defects often lead to disease. Protein-protein interactions (PPIs) within the membrane are therefore of great interest as therapeutic targets. Here we review the progress in the application of membrane-insertable peptides for the disruption or stabilization of membrane-based PPIs. We describe the design and preparation of transmembrane peptide mimics; and of several categories of peptidomimetics used for study, including d-enantiomers, non-natural amino acids, peptoids, and β-peptides. Further aspects of the review describe modifications to membrane-insertable peptides, including lipidation and cyclization via hydrocarbon stapling. These approaches provide a pathway toward the development of metabolically stable, non-toxic, and efficacious peptide modulators of membrane-based PPIs. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Michael Garton; Satra Nim; Tracy A. Stone; Kyle Ethan Wang; Charles M. Deber; Philip M. Kim
Significance Using D-amino acids as the building blocks for bioactive peptides can dramatically increase their potency. However, simply swapping regular levorotary amino acids for dextrorotary (D)-amino acids alters the peptide surface topology and function is lost. Current methods to overcome this are not generally applicable and exclude the majority of therapeutic targets. By creating a mirror image of all 111,867 protein structures in the Protein Data Bank (PDB), we convert this repository into a D-peptide database with 2.8 million D-peptide structures. This D-PDB can be searched to find therapeutically active topologies, demonstrated here by the discovery of D-peptide GLP1R and PTH1R agonists. Evaluation of D-PDB coverage suggests that it holds candidates for most therapeutic targets and, thus, potentially contains hundreds of potent drug leads. Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 105-fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical—“hotspot”—residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life.
Biochemistry | 2015
Tracy A. Stone; Nina Schiller; Gunnar von Heijne; Charles M. Deber
Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate–polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity in Leu-block segments, promote translocon-mediated insertion.
Bioorganic & Medicinal Chemistry | 2017
Tracy A. Stone; Gregory Cole; Huong Q. Nguyen; Simon Sharpe; Charles M. Deber
Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart. The previously-described CAP, 6K-F17 (KKKKKK-AAFAAWAAFAA-NH2) was used as the backbone for incorporation of an i to i + 4 helical hydrocarbon staple through olefin ring closing metathesis. Stapled versions of 6K-F17 showed an increase in non-selective membrane interaction, where the staple itself enhances the degree of membrane interaction and rate of cell death while maintaining high potency against bacterial membranes. However, the higher averaged hydrophobicity imparted by the staple also significantly increases toxicity to mammalian cells. This deleterious effect is countered through stepwise reduction of the stapled 6K-F17s backbone hydrophobicity through polar amino acid substitutions. Circular dichroism assessment of secondary structure in various bacterial membrane mimetics reveals that a helical structure may improve - but is not an absolute requirement for - antimicrobial activity of 6K-F17. Further, phosphorus-31 static solid state NMR spectra revealed that both non-toxic stapled and linear peptides bind bacterial membranes in a similar manner that does not involve a detergent-like mechanism of lipid removal. The overall results suggest that the technique of hydrocarbon stapling can be readily applied to membrane-interactive CAPs to modulate how they interact and target biological membranes.
Biochimica et Biophysica Acta | 2018
Yuan-Heng Chang; Tracy A. Stone; Stephanie Chin; Mira Glibowicka; Christine E. Bear; Charles M. Deber
Missense mutations constitute 40% of 2000 cystic fibrosis-phenotypic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) database, yet the precise mechanism as to how a point mutation can render the entire 1480-residue CFTR protein dysfunctional is not well-understood. Here we investigate the structural effects of two CF-phenotypic mutations - glutamic acid to glycine at position 217 (E217G) and glutamine to arginine at position 220 (Q220R) - in the extracellular (ECL2) loop region of human CFTR using helical hairpin constructs derived from transmembrane (TM) helices 3 and 4 of the first membrane domain. We systematically replaced the wild type (WT) residues E217 and Q220 with the subset of missense mutations that could arise through a single nucleotide change in their respective codons. Circular dichroism spectra of E217G revealed that a significant increase in helicity vs. WT arises in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, while this mutant showed a similar gel shift to WT on SDS-PAGE gels. In contrast, the CF-mutant Q220R showed similar helicity but an increased gel shift vs. WT. These structural variations are compared with the maturation levels of the corresponding mutant full-length CFTRs, which we found are reduced to approx. 50% for E217G and 30% for Q220R vs. WT. The overall results with CFTR hairpins illustrate the range of impacts that single mutations can evoke in intramolecular protein-protein and/or protein-lipid interactions - and the levels to which corresponding mutations in full-length CFTR may be flagged by quality control mechanisms during biosynthesis.
Scientific Reports | 2018
Trevor Beaudoin; Tracy A. Stone; Miroslawa Glibowicka; Christina Adams; Yvonne Yau; Saumel Ahmadi; Christine E. Bear; Hartmut Grasemann; Valerie Waters; Charles M. Deber
With the increasing recognition of biofilms in human disease, the development of novel antimicrobial therapies is of critical importance. For example, in patients with cystic fibrosis (CF), the acquisition of host-adapted, chronic Pseudomonas aeruginosa infection is associated with a decline in lung function and increased mortality. Our objective was to test the in vitro efficacy of a membrane-active antimicrobial peptide we designed, termed 6K-F17 (sequence: KKKKKK-AAFAAWAAFAA-NH2), against multidrug resistant P. aeruginosa biofilms. This peptide displays high antimicrobial activity against a range of pathogenic bacteria, yet is non-hemolytic to human erythrocytes and non-toxic to human bronchial epithelial cells. In the present work, P. aeruginosa strain PAO1, and four multidrug resistant (MDR) isolates from chronically infected CF individuals, were grown as 48-hour biofilms in a static biofilm slide chamber model. These biofilms were then exposed to varying concentrations of 6K-F17 alone, or in the presence of tobramycin, prior to confocal imaging. Biofilm biovolume and viability were assessed. 6K-F17 was able to kill biofilms – even in the presence of sputum – and greatly reduce biofilm biovolume in PAO1 and MDR isolates. Strikingly, when used in conjunction with tobramycin, low doses of 6K-F17 significantly potentiated tobramycin killing, leading to biofilm destruction.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Victor Ovchinnikov; Tracy A. Stone; Charles M. Deber; Martin Karplus
Significance Bacterial pathogens are developing resistance to antibiotic compounds at an alarming rate. We use computer simulations to design inhibitors of the Escherichia coli multidrug resistance protein EmrE (efflux-multidrug resistance E) from the small multidrug family. Starting with low-resolution X-ray data, we obtain an atomic structure of EmrE using extensive molecular simulations. Based on the structure, we design hydrocarbon-stapled peptide inhibitors of EmrE, which are synthesized and shown to be effective in vivo. The rational drug design approach described here holds promise for combating efflux-mediated drug resistance in microbes and, more generally, in cancer. Small multidrug resistance (SMR) pumps represent a minimal paradigm of proton-coupled membrane transport in bacteria, yet no high-resolution structure of an SMR protein is available. Here, atomic-resolution structures of the Escherichia coli efflux-multidrug resistance E (EmrE) multidrug transporter in ligand-bound form are refined using microsecond molecular dynamics simulations biased using low-resolution data from X-ray crystallography. The structures are compatible with existing mutagenesis data as well as NMR and biochemical experiments, including pKas of the catalytic glutamate residues and the dissociation constant (KD) of the tetraphenylphosphonium+ cation. The refined structures show the arrangement of residue side chains in the EmrE active site occupied by two different ligands and in the absence of a ligand, illustrating how EmrE can adopt structurally diverse active site configurations. The structures also show a stable, well-packed binding interface between the helices H4 of the two monomers, which is believed to be crucial for EmrE dimerization. Guided by the atomic details of this interface, we design proteolysis-resistant stapled peptides that bind to helix H4 of an EmrE monomer. The peptides are expected to interfere with the dimerization and thereby inhibit drug transport. Optimal positions of the peptide staple were determined using free-energy simulations of peptide binding to monomeric EmrE. Three of the four top-scoring peptides selected for experimental testing resulted in significant inhibition of proton-driven ethidium efflux in live cells without nonspecific toxicity. The approach described here is expected to be of general use for the design of peptide therapeutics.
Biopolymers | 2018
Charles M. Deber; Tracy A. Stone
Large, hydrophobic residues (isoleucine, leucine, and valine) dominate sequences of transmembrane (TM) helices in membrane proteins (total ∼34%), but their relative roles in mediating the biologically relevant protein–lipid and protein–protein interactions have not been systematically evaluated. Here we have synthesized Leu‐containing Lys‐tagged hydrophobic peptides of identical composition, where sequences have been designed with their Leu residues either scrambled (sequence KKKLAASALAAAWLAALALSAAKKK); clustered (KKKAAASAALLLWLLAAAASAAKKK); or “lipopathic” (all Leu on one helical face) (KKKAAASLAALLWALLAAASAAKKK). These peptides were compared by several biophysical/biochemical techniques to the corresponding set of peptides where the Leu residues are replaced by the isosteric Ile residues. Circular dichroism spectra showed that all peptides were helical in POPC liposomes, as confirmed by blue shifts in Trp fluorescence spectra, notably with the Ile‐lipopathic peptide displaying increased Trp burial versus its Leu counterpart. Quenching experiments with a dibromo‐PC lipid indicated deeper membrane penetration of the Ile versus the Leu lipopathic peptide—a result supported by protease degradation assays where Ile peptides reconstituted into lipid bilayers were significantly more protected from the protease than the Leu peptides. Assessment of Trp blue shifts in the presence of lipid bilayers of varied lipid packing indicated that Leu/Ile peptide interactions are dependent on lipid composition. The overall results suggest that two main interactions tend to dominate Leu and Ile interactions within the membrane: (1) hydrophobic interactions between amino acid side chains and the surrounding lipid; and (2) degree of disruption of lipid–lipid packing. This “battle of giants” likely underlies the specific role(s) that Leu and Ile will play in the folding of a given membrane protein.
Biochemistry | 2016
Tracy A. Stone; Nina Schiller; Natalie Workewych; Gunnar von Heijne; Charles M. Deber