Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy L. McGaha is active.

Publication


Featured researches published by Tracy L. McGaha.


Journal of Experimental Medicine | 2006

TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE

Marc Ehlers; Hidehiro Fukuyama; Tracy L. McGaha; Alan Aderem; Jeffrey V. Ravetch

Loss of tolerance in systemic lupus erythematosus (SLE) leads to the generation of autoantibodies, which accumulate in end-organs where they induce disease. Here we show that immunoglobulin (Ig)G2a and 2b autoantibodies are the pathogenic isotypes by recruiting FcγRIV expressing macrophages. Class switching, but not development, of IgM anti-self B cells to these pathogenic subclasses requires the innate immune receptor Toll-like receptor (TLR)9 and MyD88 signaling. In their absence, switching of autoreactive B cells to the IgG2a and 2b subclasses is blocked, resulting in reduced pathology and mortality. In contrast, switching of anti-self B cells to IgG1 is not perturbed and generation of nonautoreactive IgG2a and 2b antibodies is not impaired in TLR9-deficient mice. Thus, the TLR9 pathway is a potential target for therapeutic intervention in SLE.


Blood | 2008

APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells.

Elodie Belnoue; Maria Pihlgren; Tracy L. McGaha; Chantal Tougne; Anne-Françoise Rochat; Claudia Bossen; Pascal Schneider; Bertrand Huard; Paul-Henri Lambert; Claire-Anne Siegrist

The persistence of serum IgG antibodies elicited in human infants is much shorter than when such responses are elicited later in life. The reasons for this rapid waning of antigen-specific antibodies elicited in infancy are yet unknown. We have recently shown that adoptively transferred tetanus toxoid (TT)-specific plasmablasts (PBs) efficiently reach the bone marrow (BM) of infant mice. However, TT-specific PBs fail to persist in the early-life BM, suggesting that they fail to receive the molecular signals that support their survival/differentiation. Using a proliferation-inducing ligand (APRIL)- and B-cell activating factor (BAFF) B-lymphocyte stimulator (BLyS)-deficient mice, we demonstrate here that APRIL is a critical factor for the establishment of the adult BM reservoir of anti-TT IgG-secreting cells. Through in vitro analyses of PB/plasma cell (PC) survival/differentiation, we show that APRIL induces the expression of Bcl-X(L) by a preferential binding to heparan sulfate proteoglycans at the surface of CD138(+) cells. Last, we identify BM-resident macrophages as the main cells that provide survival signals to PBs and show that this function is slowly acquired in early life, in parallel to a progressive acquisition of APRIL expression. Altogether, this identifies APRIL as a critical signal for PB survival that is poorly expressed in the early-life BM compartment.


Blood | 2011

Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen.

Tracy L. McGaha; Yunying Chen; Buvana Ravishankar; Nico van Rooijen; Mikael Karlsson

Marginal zone macrophages (MZMs) are a small subset of specialized splenic macrophages known to interact with apoptotic material entering the spleen from circulation. To evaluate whether MZMs regulate immunity to apoptotic material we depleted MZMs and assessed innate and adaptive immune responses to apoptotic cells administered systemically. MZM depletion altered the spatial localization of apoptotic cells, which accumulated in T-cell areas of the lymphoid follicles. MZM depletion also enhanced phagocytosis of apoptotic cells by red pulp (CD68(+)F4/80(+)) macrophages, which expressed increased CD86, MHCII, and CCR7. MZM depletion led to increased production of proinflammatory cytokines and enhanced lymphocyte responsiveness to apoptotic cell antigens. Furthermore, we found that MZM depletion accelerated autoimmune disease progression in mice genetically prone to systemic lupus erythematosus and caused significant mortality in wild-type mice repeatedly exposed to exogenous apoptotic thymocytes. These findings support the hypothesis that MZMs are central in the clearance of apoptotic cells to minimize the immunogenicity of autoantigens.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase

Buvana Ravishankar; Haiyun Liu; Rahul Shinde; Phillip Chandler; Babak Baban; Masato Tanaka; David H. Munn; Andrew L. Mellor; Mikael Karlsson; Tracy L. McGaha

Tolerance to self-antigens present in apoptotic cells is critical to maintain immune-homeostasis and prevent systemic autoimmunity. However, mechanisms that sustain self-tolerance are poorly understood. Here we show that systemic administration of apoptotic cells to mice induced splenic expression of the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). IDO expression was confined to the splenic marginal zone and was abrogated by depletion of CD169+ cells. Pharmacologic inhibition of IDO skewed the immune response to apoptotic cells, resulting in increased proinflammatory cytokine production and increased effector T-cell responses toward apoptotic cell-associated antigens. Presymptomatic lupus-prone MRLlpr/lpr mice exhibited abnormal elevated IDO expression in the marginal zone and red pulp and inhibition of IDO markedly accelerated disease progression. Moreover, chronic exposure of IDO-deficient mice to apoptotic cells induced a lupus-like disease with serum autoreactivity to double-stranded DNA associated with renal pathology and increased mortality. Thus, IDO limits innate and adaptive immunity to apoptotic self-antigens and IDO-mediated regulation inhibits inflammatory pathology caused by systemic autoimmune disease.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Disrupting the IL-4 gene rescues mice homozygous for the tight-skin mutation from embryonic death and diminishes TGF-β production by fibroblasts

Takao Kodera; Tracy L. McGaha; Robert G. Phelps; William E. Paul; Constantin Bona

The TSK/TSK mutation is embryonic lethal; embryos have been reported to die at 7–8 days of gestational age. Crossing TSK/+, IL-4+/− mice revealed that disrupting one or both IL-4 alleles allowed survival of 29 and 47%, respectively, of TSK/TSK mice. These mice failed to develop cutaneous hyperplasia but did exhibit the emphysema that is found in TSK/+ mice. We showed that IL-4 stimulation of fibroblasts increased the level of transforming growth factor-β (TGF-β) mRNA and that lungs of TSK/+, IL-4−/− mice had substantially less TGF-β mRNA than lungs of TSK/+, IL-4+/+ mice. Thus IL-4 seems to regulate the expression of TGF-β in fibroblasts, providing an explanation for the absence of cutaneous hyperplasia in TSK/+, IL-4Rα−/− and TSK/+, TGF-β+/− mice.


Journal of Immunology | 2013

Cutting Edge: DNA Sensing via the STING Adaptor in Myeloid Dendritic Cells Induces Potent Tolerogenic Responses

Lei Huang; Lingqian Li; Henrique Lemos; Phillip Chandler; Gabriela Pacholczyk; Babak Baban; Glen N. Barber; Yoshihiro Hayakawa; Tracy L. McGaha; Buvana Ravishankar; David H. Munn; Andrew L. Mellor

Cytosolic DNA sensing via the stimulator of IFN genes (STING) adaptor incites autoimmunity by inducing type I IFN (IFN-αβ). In this study, we show that DNA is also sensed via STING to suppress immunity by inducing IDO. STING gene ablation abolished IFN-αβ and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs, and myeloid cells ingested DNPs, but CD11b+ DCs were the only cells to express IFN-β, whereas CD11b+ non-DCs were major IL-1β producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells, and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate treatment to activate STING induced selective IFN-β expression by CD11b+ DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity among physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA.


Immunological Reviews | 2012

Amino acid catabolism: a pivotal regulator of innate and adaptive immunity.

Tracy L. McGaha; Lei Huang; Henrique Lemos; Richard Metz; Mario Mautino; George C. Prendergast; Andrew L. Mellor

Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen‐presenting cell and lymphocyte functions and reveal critical roles for amino acid‐ and catabolite‐sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field.


Journal of Immunology | 2012

Decitabine and Vorinostat Cooperate To Sensitize Colon Carcinoma Cells to Fas Ligand-Induced Apoptosis In Vitro and Tumor Suppression In Vivo

Dafeng Yang; Christina M. Torres; Kankana Bardhan; Mary Zimmerman; Tracy L. McGaha; Kebin Liu

The death receptor Fas and its physiological ligand (FasL) regulate apoptosis of cancerous cells, thereby functioning as a critical component of the host cancer immunosurveillance system. To evade Fas-mediated apoptosis, cancer cells often downregulate Fas to acquire an apoptosis-resistant phenotype, which is a hallmark of metastatic human colorectal cancer. Therefore, targeting Fas resistance is of critical importance in Fas-based cancer therapy and immunotherapy. In this study, we demonstrated that epigenetic inhibitors decitabine and vorinostat cooperate to upregulate Fas expression in metastatic human colon carcinoma cells. Decitabine also upregulates BNIP3 and Bik expression, whereas vorinostat decreased Bcl-xL expression. Altered expression of Fas, BNIP3, Bik, and Bcl-xL resulted in effective sensitization of the metastatic human colon carcinoma cells to FasL-induced apoptosis. Using an experimental metastasis mouse model, we further demonstrated that decitabine and vorinostat cooperate to suppress colon carcinoma metastasis. Analysis of tumor-bearing lung tissues revealed that a large portion of tumor-infiltrating CD8+ T cells are FasL+, and decitabine and vorinostat-mediated tumor-suppression efficacy was significantly decreased in Fasgld mice compared with wild-type mice, suggesting a critical role for FasL in decitabine and vorinostat-mediated tumor suppression in vivo. Consistent with their function in apoptosis sensitization, decitabine and vorinostat significantly increased the efficacy of CTL adoptive transfer immunotherapy in an experimental metastasis mouse model. Thus, our data suggest that combined modalities of chemotherapy to sensitize the tumor cell to Fas-mediated apoptosis and CTL immunotherapy is an effective approach for the suppression of colon cancer metastasis.


Journal of Clinical Immunology | 2005

Molecular Aspects of Regulation of Collagen Gene Expression in Fibrosis

Rashpal K. Bhogal; Cristina Stoica; Tracy L. McGaha; Constantin A. Bona

Fibrosis, the hyper-accumulation of scar tissue, is characterized by the overproduction and deposition of type I and III collagen by fibroblasts and is the one of the main pathologic outcomes of the autoimmune disorder scleroderma. While the causes of fibrosis in scleroderma are unknown, cytokines such as TGF-β, IL-4 and IL-13, play a crucial role in the stimulation of collagen production have been implicated in the disease process. In fibroblasts stimulation of collagen production by these cytokines is dependent on the Smad and STAT6 signaling pathways induced by TGF-β and IL-4, IL-13 respectively. Furthermore, mounting evidence suggest cytokine crosstalk is relevant in the sclerotic process. Our laboratory demonstrated an increase in TGF-β1 gene transcription from fibroblasts stimulated with IL-4. In addition, TSK/+ mice lacking the IL-4α receptor show impaired transcription of the TGF-β1 gene and did not display fibrosis. Likewise, it appears that STAT6 plays a role in fibroblast TGF-β1 transcription after IL-4 or IL-13 stimulation. These findings suggest that an epistatic interaction between IL-4 and TGF-β may exist which is crucial for pathologic sclerotic activity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance

Buvana Ravishankar; Rahul Shinde; Haiyun Liu; Kapil Chaudhary; Jillian Bradley; Henrique Lemos; Phillip Chandler; Masato Tanaka; David H. Munn; Andrew L. Mellor; Tracy L. McGaha

Significance Apoptotic cell-mediated suppression is critical to prevent inflammatory pathology and fatal autoimmunity. Integral to this process is early recognition by innate phagocytes driving downstream suppressive mechanisms. Though significant progress has been made identifying adaptive immune components involved in apoptotic cell-driven tolerance, early innate mechanisms involved in this process are relatively unknown. Here we report that apoptotic cell capture by CD169+ macrophages promotes rapid expression of the chemokine CCL22, inducing migration and activation of FoxP3+ Tregs and dendritic cells. Moreover, we found CCL22 function is required for generation of stable allograft tolerance and prevention of apoptotic cell-driven autoimmunity. Thus, our findings highlight a previously unknown mechanism whereby stromal macrophages coordinate early cellular interactions required for stable apoptotic cell-driven immune tolerance. Tolerance to apoptotic cells is essential to prevent inflammatory pathology. Though innate responses are critical for immune suppression, our understanding of early innate immunity driven by apoptosis is lacking. Herein we report apoptotic cells induce expression of the chemokine CCL22 in splenic metallophillic macrophages, which is critical for tolerance. Systemic challenge with apoptotic cells induced rapid production of CCL22 in CD169+ (metallophillic) macrophages, resulting in accumulation and activation of FoxP3+ Tregs and CD11c+ dendritic cells, an effect that could be inhibited by antagonizing CCL22-driven chemotaxis. This mechanism was essential for suppression after apoptotic cell challenge, because neutralizing CCL22 or its receptor, reducing Treg numbers, or blocking effector mechanisms abrogated splenic TGF-β and IL-10 induction; this promoted a shift to proinflammatory cytokines associated with a failure to suppress T cells. Similarly, CCR4 inhibition blocked long-term, apoptotic cell-induced tolerance to allografts. Finally, CCR4 inhibition resulted in a systemic breakdown of tolerance to self after apoptotic cell injection with rapid increases in anti-dsDNA IgG and immune complex deposition. Thus, the data demonstrate CCL22-dependent chemotaxis is a key early innate response required for apoptotic cell-induced suppression, implicating a previously unknown mechanism of macrophage-dependent coordination of early events leading to stable tolerance.

Collaboration


Dive into the Tracy L. McGaha's collaboration.

Top Co-Authors

Avatar

Andrew L. Mellor

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lei Huang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

David H. Munn

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Haiyun Liu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Rahul Shinde

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Constantin A. Bona

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Henrique Lemos

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Kapil Chaudhary

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge