Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy L. Stevens is active.

Publication


Featured researches published by Tracy L. Stevens.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure

Andreas Luchner; Tracy L. Stevens; Daniel D. Borgeson; Margaret M. Redfield; Chi Ming Wei; J. Gordon Porter; John C. Burnett

Although brain natriuretic peptide (BNP) of myocardial origin is important in cardiovascular and renal function and as a marker of cardiac dysfunction, the expression of BNP in atrial and ventricular myocardium remains controversial both under normal conditions and in heart failure. We therefore determined left atrial and left ventricular (LV) gene expression and tissue concentration as well as circulating BNP during the evolution of rapid ventricular pacing-induced congestive heart failure (CHF) in the dog. Early LV dysfunction after 10 days of pacing was characterized by impaired LV function but maintained arterial pressure, and overt CHF after 38 days of pacing was characterized by further impaired LV function and decreased systemic arterial pressure. Under normal conditions, cardiac BNP mRNA and cardiac tissue BNP were of atrial origin. In early LV dysfunction, BNP mRNA and tissue BNP were markedly increased in the left atrium in association with an increase in circulating BNP but remained below or at the limit of detection in the LV. In overt CHF, BNP mRNA was further increased in the left atrium and first increased in the LV, together with an increase in LV tissue BNP and a further increase in circulating BNP. In the progression of CHF, early LV dysfunction is characterized by a selective increase in atrial BNP expression in association with increased circulating BNP. Overt CHF is characterized by an additional recruitment of ventricular BNP expression and a further increase in circulating BNP. These studies provide important new insight into the local and temporal regulation of cardiac BNP gene expression during the progression of heart failure and underscore the predominant endocrine role of atrial myocardium under normal conditions and in early LV dysfunction.Although brain natriuretic peptide (BNP) of myocardial origin is important in cardiovascular and renal function and as a marker of cardiac dysfunction, the expression of BNP in atrial and ventricular myocardium remains controversial both under normal conditions and in heart failure. We therefore determined left atrial and left ventricular (LV) gene expression and tissue concentration as well as circulating BNP during the evolution of rapid ventricular pacing-induced congestive heart failure (CHF) in the dog. Early LV dysfunction after 10 days of pacing was characterized by impaired LV function but maintained arterial pressure, and overt CHF after 38 days of pacing was characterized by further impaired LV function and decreased systemic arterial pressure. Under normal conditions, cardiac BNP mRNA and cardiac tissue BNP were of atrial origin. In early LV dysfunction, BNP mRNA and tissue BNP were markedly increased in the left atrium in association with an increase in circulating BNP but remained below or at the limit of detection in the LV. In overt CHF, BNP mRNA was further increased in the left atrium and first increased in the LV, together with an increase in LV tissue BNP and a further increase in circulating BNP. In the progression of CHF, early LV dysfunction is characterized by a selective increase in atrial BNP expression in association with increased circulating BNP. Overt CHF is characterized by an additional recruitment of ventricular BNP expression and a further increase in circulating BNP. These studies provide important new insight into the local and temporal regulation of cardiac BNP gene expression during the progression of heart failure and underscore the predominant endocrine role of atrial myocardium under normal conditions and in early LV dysfunction.


Journal of Clinical Investigation | 1995

A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction.

Tracy L. Stevens; John C. Burnett; Masahiko Kinoshita; Yuzuru Matsuda; Margaret M. Redfield

Asymptomatic or early left ventricular dysfunction in humans is characterized by increases in circulating atrial natriuretic peptide (ANP) without activation of the renin-angiotensin-aldosterone system (RAAS). We previously reported a canine model of early left ventricular dysfunction (ELVD) produced by rapid ventricular pacing and characterized by an identical neurohumoral profile and maintenance of the natriuretic response to volume expansion (VE). To test the hypothesis that elevated endogenous ANP suppresses the RAAS and maintains sodium excretion in ELVD, we assessed the effects of antagonism of ANP on cardiorenal and neurohumoral function in ELVD. Chronic ANP suppression was produced by bilateral atrial appendectomies before the production of ELVD by rapid ventricular pacing (ELVD-APPX, n = 5). This group was compared with a separate group with ELVD and intact atrial appendages (ELVD-INTACT, n = 8). ELVD-APPX was characterized by lower circulating ANP (50 +/- 11 vs. 158 +/- 37 pg/ml, P < 0.05), activation of plasma renin activity (PRA) (9.4 +/- 2.4 vs. 0.6 +/- 0.4 ng/ml per h, P < 0.05) and aldosterone (36.4 +/- 12.5 vs. 2.5 +/- 0.0 ng/dl, P < 0.05) when compared to ELVD-INTACT. In comparison to the ELVD-INTACT group, sodium excretion was decreased before and during VE in the ELVD-APPX group. Acute ANP antagonism was produced by administration of the particulate guanylate cyclase coupled natriuretic peptide receptor antagonist, HS-142-1, to seven conscious dogs with ELVD and intact atrial appendages (ELVD-INTACT). HS-142-1 decreased plasma concentrations and renal generation of the ANP second messenger, cGMP, and was associated with activation of PRA and sodium retention with enhanced tubular sodium reabsorption. These data support a significant role for elevated endogenous ANP in the maintenance of sodium excretion and regulation of the RAAS in experimental ELVD.


Hypertension | 1996

Angiotensin II in the Evolution of Experimental Heart Failure

Andreas Luchner; Tracy L. Stevens; Daniel D. Borgeson; Margaret M. Redfield; Jane E. Bailey; Sharon M. Sandberg; Denise M. Heublein; John C. Burnett

Although angiotensin II (Ang II) has been implicated in the pathophysiology of congestive heart failure, its temporal and regional changes during the development and progression of the disease are poorly defined. Our objective was to assess circulating, renal, cardiac, and vascular Ang II in a canine model of rapid ventricular pacing-induced heart failure that evolves from early left ventricular dysfunction to overt congestive heart failure. Ang II was measured by radioimmunoassay with low cross-reactivity to other angiotensins. Control, early left ventricular dysfunction, and overt congestive heart failure dogs were studied. Early left ventricular dysfunction was characterized by impaired cardiac function, cardiac enlargement, preserved renal perfusion pressure, maintained urinary sodium excretion, and normal plasma renin activity. Overt congestive heart failure was characterized by further impaired cardiac function and cardiac enlargement, reduced renal perfusion pressure, urinary sodium retention, and increased plasma renin activity and plasma Ang II. In early left ventricular dysfunction dogs, renal cortical, renal medullary, ventricular, and aortic Ang II were unchanged, and atrial Ang II was decreased. In overt congestive heart failure dogs, Ang II was increased in the kidney and heart compared with normal dogs and in all tissues compared with early left ventricular dysfunction dogs. The greatest increase in tissue Ang II occurred in the renal medulla. We conclude that early increases in local renal, myocardial, and vascular Ang II do not occur in this model of early left ventricular dysfunction and may even be suppressed. In contrast, increased myocardial and particularly renal Ang II in association with increased circulating Ang II are hallmarks of overt experimental congestive heart failure. These studies provide new insights into the temporal and regional alterations in Ang II during the progression of experimental congestive heart failure.


Journal of Clinical Investigation | 1996

Angiotensin converting enzyme inhibition modulates endogenous endothelin in chronic canine thoracic inferior vena caval constriction.

Alfredo L. Clavell; Michael T. Mattingly; Tracy L. Stevens; Amiram Nir; R. Scott Wright; L. L. Aarhus; Dennise M. Heublein; John C. Burnett

Endothelin (ET) is a potent vasoconstrictor peptide which is elevated in plasma in congestive heart failure. Recent studies suggest an important role for angiotensin II (AII) in the activation of ET in cultured cardiomyocytes. Chronic thoracic inferior vena caval constriction (TIVCC) is a model of reduced cardiac output that mimics the neurohumoral activation observed in congestive heart failure. We hypothesized that activation of the renin-angiotensin system in TIVCC plays a role in the activation of ET and that the elevation of endogenous ET contributes to the systemic and renal vasoconstriction that characterizes this model of venous congestion. We studied conscious dogs after 7 d of TIVCC in the presence or absence of chronic angiotensin converting enzyme inhibition with enalapril. TIVCC resulted in marked activation of plasma AII and ET in plasma, right atrium, lung, and renal medulla which was further localized to cardiomyocytes, pulmonary, and renal epithelial cells. Chronic angiotensin converting enzyme inhibition abolished the increases in plasma AII and ET during TIVCC. Acute endothelin A receptor blockade with FR-139317 resulted in significant decreases in mean arterial pressure and systemic vascular resistance in TIVCC. We conclude that activation of the renin-angiotensin system contributes to the activation of circulating and local ET in TIVCC and that this activation plays an important role in the regulation of arterial pressure and systemic vascular resistance in this model of congestive failure.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1997

Adrenomedullin in experimental congestive heart failure: cardiorenal activation

Michihisa Jougasaki; Tracy L. Stevens; Daniel D. Borgeson; Andreas Luchner; Margaret M. Redfield; John C. Burnett

Adrenomedullin (ADM) is a new member of a family of vasodilating and natriuretic peptides that plays an important role in cardiorenal regulation. This study was designed to establish the plasma, urinary, cardiac, and renal tissue concentrations and immunohistochemical localizations of ADM in normal dogs and dogs with experimental congestive heart failure (CHF) produced by rapid ventricular pacing. Plasma ADM concentration was 5.6 +/- 0.4 pg/ml in normal dogs and significantly increased to 14.5 +/- 2.5 pg/ml in CHF dogs (P < 0.05). Ventricular and renal tissue ADM were significantly increased in CHF dogs compared with normals. Immunohistochemical examination revealed positive ADM immunostaining within the myocytes, and ventricular ADM immunoreactivity was significantly more intense in CHF dogs than in normals. ADM immunoreactivity was also observed in the glomerulus, distal tubules, and medullary collecting duct cells in the kidney, and the intensities of ADM immunoreactivity in these sites were increased in CHF dogs compared with normals. In addition, ventricular ADM was a powerful marker for left ventricular mass, and circulating ADM correlated positively with left ventricular end-diastolic pressure and inversely with cardiac output and ejection fraction. Despite an increase in renal tissue ADM, urinary ADM did not increase in CHF dogs. The current study demonstrates that plasma concentration of ADM is increased in experimental CHF and that ventricular and renal ADM is activated in the progression of CHF. Tissue and circulating ADM also are markers for the alterations in myocardial structure and function. This study supports a potential role for ADM in the neurohumoral activation in experimental CHF.Adrenomedullin (ADM) is a new member of a family of vasodilating and natriuretic peptides that plays an important role in cardiorenal regulation. This study was designed to establish the plasma, urinary, cardiac, and renal tissue concentrations and immunohistochemical localizations of ADM in normal dogs and dogs with experimental congestive heart failure (CHF) produced by rapid ventricular pacing. Plasma ADM concentration was 5.6 ± 0.4 pg/ml in normal dogs and significantly increased to 14.5 ± 2.5 pg/ml in CHF dogs ( P < 0.05). Ventricular and renal tissue ADM were significantly increased in CHF dogs compared with normals. Immunohistochemical examination revealed positive ADM immunostaining within the myocytes, and ventricular ADM immunoreactivity was significantly more intense in CHF dogs than in normals. ADM immunoreactivity was also observed in the glomerulus, distal tubules, and medullary collecting duct cells in the kidney, and the intensities of ADM immunoreactivity in these sites were increased in CHF dogs compared with normals. In addition, ventricular ADM was a powerful marker for left ventricular mass, and circulating ADM correlated positively with left ventricular end-diastolic pressure and inversely with cardiac output and ejection fraction. Despite an increase in renal tissue ADM, urinary ADM did not increase in CHF dogs. The current study demonstrates that plasma concentration of ADM is increased in experimental CHF and that ventricular and renal ADM is activated in the progression of CHF. Tissue and circulating ADM also are markers for the alterations in myocardial structure and function. This study supports a potential role for ADM in the neurohumoral activation in experimental CHF.


Journal of Cardiac Failure | 1996

Renal role of the endogenous natriuretic peptide system in acute congestive heart failure

Tracy L. Stevens; Todd E. Rasmussen; Chi Ming Wei; Masahiko Kinoshita; Yuzuru Matsuda; John C. Burnett

BACKGROUND Atrial and brain natriuretic peptides exert renal and cardiovascular actions through binding to the natriuretic peptide-A receptor, while C-type natriuretic peptide mediates actions that occur through binding to the natriuretic peptide-B receptor, with subsequent generation of cyclic guanosine monophosphate. This study determined responses of circulating atrial natriuretic peptides in experimental acute heart failure and addressed the hypothesis that elevated circulating atrial natriuretic peptides serve a homeostatic role in regulating sodium excretion and that this action is localized to the glomerulus and distal nephron, sites rich in natriuretic peptide-A receptors. METHODS AND RESULTS Studies were performed in the absence and presence of HS-142-1, an inhibitor of the natriuretic peptide receptors. Two groups of anesthetized dogs underwent induction of acute heart failure by rapid ventricular pacing, as characterized by decreases in cardiac output and increases in filling pressures with associated elevation of endogenous atrial natriuretic peptides secondary to increases in atrial stretch. In group 1 (n = 5, vehicle intrarenal bolus), despite acute heart failure-mediated decreases in cardiac output, sodium excretion was preserved with maintenance of the glomerular filtration rate and distal fractional sodium reabsorption. In group 2 (n = 5), in response to the natriuretic peptide receptor antagonist, HS-142-1 (0.5 mg/kg intrarenal bolus), sodium excretion (17.0 +/- 4.4 to 5.9 +/- 3.2 microEq/min; P < .05) and glomerular filtration rate decreased (33.0 +/- 3.6 to 21.0 +/- 3.9 mL/min; P < .05) and distal fractional sodium reabsorption increased (98.0 +/- 0.63 to 99.3 +/- 0.25%; P < .05), in association with a decrease in plasma cyclic guanosine monophosphate (13.0 +/- 3.5 to 6.6 +/- 2.9 pmol/mL; P < .05) and renal cyclic guanosine monophosphate generation (1,216 +/- 421 to 466 +/- 208 pmol/min; P < .05). CONCLUSIONS This study supports a functionally significant role for the endogenous natriuretic peptide system in preserving sodium homeostasis and glomerular filtration rate in acute heart failure.


Hypertension | 1994

Modulation of Exogenous and Endogenous Atrial Natriuretic Peptide by a Receptor Inhibitor

Tracy L. Stevens; Chi Ming Wei; Lawrence L. Aahrus; Denise M. Heublein; Masahiko Kinoshita; Yuzuru Matsuda; John C. Burnett

Atrial natriuretic peptide is an important peptide hormone of cardiac origin that functions to regulate cardiac preload via the regulation of sodium excretion. This natriuretic action occurs through activation of the particulate guanylyl cyclase-linked natriuretic peptide-A receptor. HS-142-1 is a newly discovered antagonist of the natriuretic peptide-A receptor that permits insight into the functional role of atrial natriuretic peptide in cardiorenal homeostasis. The first objective of this study was to define for the first time the intrarenal action of HS-142-1 on exogenous atrial natriuretic peptide-mediated natriuresis in anesthetized normal dogs. In group 1 (n = 6), which received intravenous atrial natriuretic peptide at 100 ng/kg per minute, intrarenal HS-142-1 (0.5 mg/kg bolus) attenuated atrial natriuretic peptide-induced increases in glomerular filtration rate, urine flow, sodium excretion, and renal cyclic GMP generation and decreases in distal tubular sodium reabsorption. The second objective was to determine whether endogenous atrial natriuretic peptide participates in the regulation of basal sodium excretion. In group 2 (n = 6), intrarenal HS-142-1 alone decreased both absolute and fractional sodium excretion and renal cyclic GMP generation and increased distal tubular sodium reabsorption. These studies demonstrate that HS-142-1 markedly attenuates exogenous atrial natriuretic peptide-mediated natriuresis via enhancement of distal tubular reabsorption and blunting of increases in glomerular filtration rate. Second, the current studies support a functional role for endogenous atrial natriuretic peptide in the regulation of basal sodium excretion.


Journal of Cardiac Failure | 2002

The potential of brain natriuretic peptide as a biomarker for New York Heart Association class during the outpatient treatment of heart failure

Shang Chiun Lee; Tracy L. Stevens; Sharon M. Sandberg; Denise M. Heublein; Susan M. Nelson; Michihisa Jougasaki; Margaret M. Redfield; John C. Burnett


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1996

Ventricular remodeling during development and recovery from modified tachycardia-induced cardiomyopathy model

Kazuhiro Yamamoto; John C. Burnett; Lane M. Meyer; Lisa Sinclair; Tracy L. Stevens; Margaret M. Redfield


Kidney International | 2005

Natriuretic and antialdosterone actions of chronic oral NEP inhibition during progressive congestive heart failure

Fernando L. Martin; Tracy L. Stevens; Alessandro Cataliotti; John A. Schirger; Daniel D. Borgeson; Margaret M. Redfield; Andreas Luchner; John C. Burnett

Collaboration


Dive into the Tracy L. Stevens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge