Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy M. Centanni is active.

Publication


Featured researches published by Tracy M. Centanni.


Cerebral Cortex | 2014

Knockdown of the Dyslexia-Associated Gene Kiaa0319 Impairs Temporal Responses to Speech Stimuli in Rat Primary Auditory Cortex

Tracy M. Centanni; A. B. Booker; Andrew M. Sloan; Fuyi Chen; B. J. Maher; Ryan S. Carraway; Navid Khodaparast; Robert L. Rennaker; Joseph J. LoTurco; Michael P. Kilgard

One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brains ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex.


Journal of Neurophysiology | 2013

Cortical speech-evoked response patterns in multiple auditory fields are correlated with behavioral discrimination ability

Tracy M. Centanni; Michael P. Kilgard

Different speech sounds evoke unique patterns of activity in primary auditory cortex (A1). Behavioral discrimination by rats is well correlated with the distinctness of the A1 patterns evoked by individual consonants, but only when precise spike timing is preserved. In this study we recorded the speech-evoked responses in the primary, anterior, ventral, and posterior auditory fields of the rat and evaluated whether activity in these fields is better correlated with speech discrimination ability when spike timing information is included or eliminated. Spike timing information improved consonant discrimination in all four of the auditory fields examined. Behavioral discrimination was significantly correlated with neural discrimination in all four auditory fields. The diversity of speech responses across recordings sites was greater in posterior and ventral auditory fields compared with A1 and anterior auditor fields. These results suggest that, while the various auditory fields of the rat process speech sounds differently, neural activity in each field could be used to distinguish between consonant sounds with accuracy that closely parallels behavioral discrimination. Earlier observations in the visual and somatosensory systems that cortical neurons do not rely on spike timing should be reevaluated with more complex natural stimuli to determine whether spike timing contributes to sensory encoding.


Developmental Neurobiology | 2014

Degraded Auditory Processing in a Rat Model of Autism Limits the Speech Representation in Non-primary Auditory Cortex

Tracy M. Centanni; Kwok W. Im; Michael S. Borland; Nicole A. Moreno; Ryan S. Carraway; Linda G. Wilson; Michael P. Kilgard

Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism.


PLOS ONE | 2014

Speech sound processing deficits and training-induced neural plasticity in rats with dyslexia gene knockdown.

Tracy M. Centanni; Fuyi Chen; Anne M. Booker; Andrew M. Sloan; Robert L. Rennaker; Joseph J. LoTurco; Michael P. Kilgard

In utero RNAi of the dyslexia-associated gene Kiaa0319 in rats (KIA-) degrades cortical responses to speech sounds and increases trial-by-trial variability in onset latency. We tested the hypothesis that KIA- rats would be impaired at speech sound discrimination. KIA- rats needed twice as much training in quiet conditions to perform at control levels and remained impaired at several speech tasks. Focused training using truncated speech sounds was able to normalize speech discrimination in quiet and background noise conditions. Training also normalized trial-by-trial neural variability and temporal phase locking. Cortical activity from speech trained KIA- rats was sufficient to accurately discriminate between similar consonant sounds. These results provide the first direct evidence that assumed reduced expression of the dyslexia-associated gene KIAA0319 can cause phoneme processing impairments similar to those seen in dyslexia and that intensive behavioral therapy can eliminate these impairments.


Brain Research | 2014

Degraded speech sound processing in a rat model of fragile X syndrome

Tracy M. Centanni; Kwok W. Im; Kimiya C. Rahebi; Elizabeth P. Buell; Michael P. Kilgard

Fragile X syndrome is the most common inherited form of intellectual disability and the leading genetic cause of autism. Impaired phonological processing in fragile X syndrome interferes with the development of language skills. Although auditory cortex responses are known to be abnormal in fragile X syndrome, it is not clear how these differences impact speech sound processing. This study provides the first evidence that the cortical representation of speech sounds is impaired in Fmr1 knockout rats, despite normal speech discrimination behavior. Evoked potentials and spiking activity in response to speech sounds, noise burst trains, and tones were significantly degraded in primary auditory cortex, anterior auditory field and the ventral auditory field. Neurometric analysis of speech evoked activity using a pattern classifier confirmed that activity in these fields contains significantly less information about speech sound identity in Fmr1 knockout rats compared to control rats. Responses were normal in the posterior auditory field, which is associated with sound localization. The greatest impairment was observed in the ventral auditory field, which is related to emotional regulation. Dysfunction in the ventral auditory field may contribute to poor emotional regulation in fragile X syndrome and may help explain the observation that later auditory evoked responses are more disturbed in fragile X syndrome compared to earlier responses. Rodent models of fragile X syndrome are likely to prove useful for understanding the biological basis of fragile X syndrome and for testing candidate therapies.


Neurobiology of Disease | 2015

Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome

Kimiya C. Rahebi; Michael S. Borland; Elizabeth P. Buell; Tracy M. Centanni; Melyssa K. Fink; Kwok W. Im; Linda G. Wilson; Michael P. Kilgard

Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial.


Frontiers in Systems Neuroscience | 2014

Speech sound discrimination training improves auditory cortex responses in a rat model of autism.

Tracy M. Centanni; Kwok W. Im; Michael P. Kilgard

Children with autism often have language impairments and degraded cortical responses to speech. Extensive behavioral interventions can improve language outcomes and cortical responses. Prenatal exposure to the antiepileptic drug valproic acid (VPA) increases the risk for autism and language impairment. Prenatal exposure to VPA also causes weaker and delayed auditory cortex responses in rats. In this study, we document speech sound discrimination ability in VPA exposed rats and document the effect of extensive speech training on auditory cortex responses. VPA exposed rats were significantly impaired at consonant, but not vowel, discrimination. Extensive speech training resulted in both stronger and faster anterior auditory field (AAF) responses compared to untrained VPA exposed rats, and restored responses to control levels. This neural response improvement generalized to non-trained sounds. The rodent VPA model of autism may be used to improve the understanding of speech processing in autism and contribute to improving language outcomes.


Frontiers in Psychology | 2014

Phonological and lexical influences on phonological awareness in children with specific language impairment and dyslexia

Kelly Farquharson; Tracy M. Centanni; Chelsea E. Franzluebbers; Tiffany P. Hogan

Children with dyslexia and/or specific language impairment have marked deficits in phonological processing, putting them at an increased risk for reading deficits. The current study sought to examine the influence of word-level phonological and lexical characteristics on phonological awareness. Children with dyslexia and/or specific language impairment were tested using a phoneme deletion task in which stimuli differed orthogonally by sound similarity and neighborhood density. Phonological and lexical factors influenced performance differently across groups. Children with dyslexia appeared to have a more immature and aberrant pattern of phonological and lexical influence (e.g., favoring sparse and similar features). Children with SLI performed less well than children who were typically developing, but followed a similar pattern of performance (e.g., favoring dense and dissimilar features). Collectively, our results point to both quantitative and qualitative differences in lexical organization and phonological representations in children with SLI and in children with dyslexia.


Neuroscience | 2014

Detection and identification of speech sounds using cortical activity patterns.

Tracy M. Centanni; Andrew M. Sloan; Amanda C. Reed; Robert L. Rennaker; Michael P. Kilgard

We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance and without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/s), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech-processing disorders.


Ear and Hearing | 2014

Behavioral and neural discrimination of speech sounds after moderate or intense noise exposure in rats.

Amanda C. Reed; Tracy M. Centanni; Michael S. Borland; Chanel J. Matney; Michael P. Kilgard

Objectives: Hearing loss is a commonly experienced disability in a variety of populations including veterans and the elderly and can often cause significant impairment in the ability to understand spoken language. In this study, we tested the hypothesis that neural and behavioral responses to speech will be differentially impaired in an animal model after two forms of hearing loss. Design: Sixteen female Sprague–Dawley rats were exposed to one of two types of broadband noise which was either moderate or intense. In nine of these rats, auditory cortex recordings were taken 4 weeks after noise exposure (NE). The other seven were pretrained on a speech sound discrimination task prior to NE and were then tested on the same task after hearing loss. Results: Following intense NE, rats had few neural responses to speech stimuli. These rats were able to detect speech sounds but were no longer able to discriminate between speech sounds. Following moderate NE, rats had reorganized cortical maps and altered neural responses to speech stimuli but were still able to accurately discriminate between similar speech sounds during behavioral testing. Conclusions: These results suggest that rats are able to adjust to the neural changes after moderate NE and discriminate speech sounds, but they are not able to recover behavioral abilities after intense NE. Animal models could help clarify the adaptive and pathological neural changes that contribute to speech processing in hearing-impaired populations and could be used to test potential behavioral and pharmacological therapies.

Collaboration


Dive into the Tracy M. Centanni's collaboration.

Top Co-Authors

Avatar

Michael P. Kilgard

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Kwok W. Im

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Sloan

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Michael S. Borland

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Robert L. Rennaker

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Amanda C. Reed

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Elizabeth P. Buell

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar

Fuyi Chen

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimiya C. Rahebi

University of Texas at Dallas

View shared research outputs
Researchain Logo
Decentralizing Knowledge