Tracy Warbrick
Forschungszentrum Jülich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracy Warbrick.
Proceedings of the National Academy of Sciences of the United States of America | 2009
David Soto; María Jesús Funes; Azucena Guzmán-García; Tracy Warbrick; Pia Rotshtein; Glyn W. Humphreys
During the past 20 years there has been much research into the factors that modulate awareness of contralesional information in neurological patients with visual neglect or extinction. However, the potential role of the individuals emotional state in modulating awareness has been largely overlooked. In the current study, we induced a pleasant and positive affective response in patients with chronic visual neglect by allowing them to listen to their pleasant preferred music. We report that the patients showed enhanced visual awareness when tasks were performed under preferred music conditions relative to when tasks were performed either with unpreferred music or in silence. These results were also replicated when positive affect was induced before neglect was tested. Functional MRI data showed enhanced activity in the orbitofrontal cortex and the cingulate gyrus associated with emotional responses when tasks were performed with preferred music relative to unpreferred music. Improved awareness of contralesional (left) targets with preferred music was also associated with a strong functional coupling between emotional areas and attentional brain regions in spared areas of the parietal cortex and early visual areas of the right hemisphere. These findings suggest that positive affect, generated by preferred music, can decrease visual neglect by increasing attentional resources. We discuss the possible roles of arousal and mood in generating these effects.
NeuroImage | 2006
Luc Boutsen; Glyn W. Humphreys; Peter Praamstra; Tracy Warbrick
In the Thatcher illusion, a face with inverted eyes and mouth looks abnormal when upright but not when inverted. Behavioral studies have shown that thatcherization of an upright face disrupts perceptual processing of the local configuration. We recorded high-density EEG from normal observers to study ERP correlates of the illusion during the perception of faces and nonface objects, to determine whether inversion and thatcherization affect similar neural mechanisms. Observers viewed faces and houses in four conditions (upright vs. inverted, and normal vs. thatcherized) while detecting an oddball category (chairs). Thatcherization delayed the N170 component over occipito-temporal cortex to faces, but not to houses. This modulation matched the illusion as it was larger for upright than inverted faces. The P1 over medial occipital regions was delayed by face inversion but unaffected by thatcherization. Finally, face thatcherization delayed P2 over occipito-temporal but not over parietal regions, while inversion affected P2 across categories. All effects involving thatcherization were face-specific. These results indicate that effects of face inversion and feature inversion (in thatcherized faces) can be distinguished on a functional as well as neural level, and that they affect configural processing of faces in different time windows.
Translational Psychiatry | 2012
Simone Kühn; Francesco Musso; Arian Mobascher; Tracy Warbrick; Georg Winterer; Jeurgen Gallinat
Alterations of hippocampal anatomy have been reported consistently in schizophrenia. Within the present study, we used FreeSurfer to determine hippocampal subfield volumes in 21 schizophrenic patients. A negative correlation between PANSS-positive symptom score and bilateral hippocampal subfield CA2/3 as well as CA1 volume was found on high-resolution magnetic resonance images. Our observation opens the gate for advanced investigation of the commonly reported hippocampal abnormalities in schizophrenia in terms of specific subfields.
NeuroImage | 2011
Francesco Musso; Jürgen Brinkmeyer; Daniel Ecker; Markus London; Giesela Thieme; Tracy Warbrick; Hans-Jörg Wittsack; Andreas Saleh; Wolfgang Greb; Peter de Boer; Georg Winterer
BACKGROUND Behavioral and electrophysiological human ketamine models of schizophrenia are used for testing compounds that target the glutamatergic system. However, corresponding functional neuroimaging models are difficult to reconcile with functional imaging and electrophysiological findings in schizophrenia. Resolving the discrepancies between different observational levels is critical to understand the complex pharmacological ketamine action and its usefulness for modeling schizophrenia pathophysiology. METHODS We conducted a within-subject, randomized, placebo-controlled pharmacoimaging study in twenty-four male volunteers. Subjects were given low-dose S-ketamine (bolus prior to functional imaging: 0.1mg/kg during 5min, thereafter continuous infusion: 0.015625mg/kg/min reduced by 10% every ten minutes) or placebo while performing a visual oddball task during simultaneous functional magnetic resonance imaging (fMRI) with continuous recording of event-related potentials (P300) and electrodermal activity (EDA). Before and after intervention, psychopathological status was assessed using the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale. RESULTS P300 amplitude and corresponding BOLD responses were diminished in the ketamine condition in cortical regions being involved in sensory processing/selective attention. In both measurement modalities separation of drug conditions was achieved with area under the curve (AUC) values of up to 0.8-0.9. Ketamine effects were also observed in the clinical, behavioral and peripheral physiological domains (Positive and Negative Syndrome Scale, reaction hit and false alarm rate, electrodermal activity and heart rate) which were in part related to the P300/fMRI measures. CONCLUSION The findings from our ketamine experiment are consistent across modalities and directly related to observations in schizophrenia supporting the validity of the model. Our investigation provides the first prototypic example of a pharmacoimaging study using simultaneously acquired fMRI/EEG.
NeuroImage | 2009
Arian Mobascher; Jürgen Brinkmeyer; Tracy Warbrick; Francesco Musso; Hans-Jörg Wittsack; Andreas Saleh; Alfons Schnitzler; Georg Winterer
Pain is a complex experience with sensory, emotional and cognitive aspects. The cortical representation of pain - the pain matrix - consists of a network of regions including the primary (S1) and secondary (S2) sensory cortex, insula, and anterior cingulate cortex (ACC). These structures interact with brain regions such as the prefrontal cortex and the amygdalae. Simultaneous EEG/fMRI (electroencephalography/functional magnetic resonance imaging) has recently been introduced as a method to study the spatiotemporal characteristics of cognitive processes with high spatial and high temporal resolution at the same time. The present study was conducted to clarify if single trial EEG-informed BOLD modeling supports the definition of functional compartments within the pain matrix and interconnected regions. Twenty healthy subjects received painful laser stimulation while EEG and the fMRI blood oxygen level dependent (BOLD) signal were recorded simultaneously. While the laser-evoked N2 potential provided no additional information for BOLD modeling, the regressor obtained from the single trial laser-evoked P2 potential explained additional variance in a network of cortical and subcortical structures that largely overlapped with the pain matrix. This modeling strategy yielded pronounced activation in the ACC, right amygdala and thalamus. Our results suggest that laser-evoked potential (LEP) informed fMRI can be used to visualize BOLD activation in the pain matrix with an emphasis on functional compartments (as defined by the temporal dynamics of the LEP) such as the medial pain system. Furthermore, our findings suggest a concerted effort of the ACC and the amygdala in the cognitive-emotional evaluation of pain.
NeuroImage | 2009
Arian Mobascher; Jürgen Brinkmeyer; Tracy Warbrick; Francesco Musso; Hans-Jörg Wittsack; R. Stoermer; Andreas Saleh; Alfons Schnitzler; Georg Winterer
Pain is a complex experience with sensory, emotional and cognitive aspects. It also includes a sympathetic response that can be captured by measuring the electrodermal activity (EDA). The present study was performed to investigate which brain areas are associated with sympathetic activation in experimental pain; an issue that has not been addressed with fMRI (functional magnetic resonance imaging) thus far. Twelve healthy subjects received painful laser stimulation to the left hand. The event-related fMRI BOLD (blood oxygen level dependent) response was measured together with simultaneous EEG (electroencephalography) and EDA recordings. Laser stimuli induced the expected EDA response, evoked EEG potentials and BOLD responses. Single trial EDA amplitudes were used to guide further analysis of fMRI and EEG data. We found significantly higher BOLD responses in trials with high EDA vs. low EDA trials, predominantly in the insula and somatosensory cortex (S1/S2). Likewise, in the EEG we found the N2 laser evoked potentials to have significantly higher amplitudes in trials with high vs. low EDA. Furthermore EDA-informed BOLD modeling explained additional signal variance in sensory areas and yielded higher group level activation. We conclude that the sympathetic response to pain is associated with activation in pain-processing brain regions, predominantly in sensory areas and that single trial (EDA)-information can add to BOLD modeling by taking some of the response variability across trials and subjects into account. Thus, EDA is a useful additional, objective index when pain is studied with fMRI/EEG which might be of particular relevance in the context of genetic- and pharmacoimaging.
Journal of Magnetic Resonance | 2013
N. Jon Shah; Ana-Maria Oros-Peusquens; Jorge Arrubla; Ke Zhang; Tracy Warbrick; Jörg Mauler; Kaveh Vahedipour; Sandro Romanzetti; Jörg Felder; Avdo Celik; Elena Rota-Kops; Hidehiro Iida; Karl-Josef Langen; Hans Herzog; Irene Neuner
Multi-modal MR-PET-EEG data acquisition in simultaneous mode confers a number of advantages at 3 T and 9.4 T. The three modalities complement each other well; structural-functional imaging being the domain of MRI, molecular imaging with specific tracers is the strength of PET, and EEG provides a temporal dimension where the other two modalities are weak. The utility of hybrid MR-PET at 3 T in a clinical setting is presented and critically discussed. The potential problems and the putative gains to be accrued from hybrid imaging at 9.4 T, with examples from the human brain, are outlined. Steps on the road to 9.4 T multi-modal MR-PET-EEG are also illustrated. From an MR perspective, the potential for ultra-high resolution structural imaging is discussed and example images of the cerebellum with an isotropic resolution of 320 μm are presented, setting the stage for hybrid imaging at ultra-high field. Further, metabolic imaging is discussed and high-resolution images of the sodium distribution are presented. Examples of tumour imaging on a 3 T MR-PET system are presented and discussed. Finally, the perspectives for multi-modal imaging are discussed based on two on-going studies, the first comparing MR and PET methods for the measurement of perfusion and the second which looks at tumour delineation based on MRI contrasts but the knowledge of tumour extent is based on simultaneously acquired PET data.
Brain Structure & Function | 2012
Simone Kühn; Alexander Romanowski; Christina Schilling; Arian Mobascher; Tracy Warbrick; Georg Winterer; Jürgen Gallinat
Structural cerebral deficiencies in smokers have been well characterized by morphometric investigations focussing on cortical and subcortical structures. Although the role of the cerebellum is increasingly noted in mental and addiction disorders, no reports exist regarding cerebellar alterations in smokers employing a methodology specifically designed to assess the cerebellar morphology. We acquired high-resolution MRI scans from 33 heavy smokers and 22 never-smokers and used a voxel-based morphometry (VBM) approach utilizing the Spatially Unbiased Infratentorial (SUIT) toolbox (Diedrichsen 2006) to provide an optimized and fine-grained exploration of cerebellar structural alterations associated with smoking. Relative to never-smokers, smokers showed significant reductions of grey matter volume in the right cerebellum Crus I. The grey matter volume in Crus I correlated negatively with the amount of nicotine dependence as assessed by means of the Fagerström scale. Since Crus I has been identified as the cognitive division of the cerebellum, the structural deficit may in part mediate cognitive deficits previously reported in smokers. Of note, the dependence-related magnitude of the volume deficit may support the notion that the cerebellum is substantially involved in core mechanisms of drug dependence.
NeuroImage | 2007
Andrew P. Bagshaw; Tracy Warbrick
Recent EEG-fMRI studies have suggested a novel method of data fusion which uses single trial (ST) estimates of event-related potentials in the fMRI analysis. This is potentially very powerful, but rests on the assumption that the ST variability observed in EEG is reflected in the fMRI signal. The current study investigated this assumption and compared two different data processing strategies for each modality. Five subjects underwent separate EEG and fMRI sessions with checkerboard stimuli at two contrasts. EEG data were preprocessed using wavelet denoising and independent component analysis (ICA), whilst the general linear model and ICA were used for fMRI. Amplitudes and latencies of the P1 and N2 components of the visual evoked potential (VEP) were calculated for each trial. For fMRI, the amplitudes and latencies of the ST haemodynamic responses (HR) were calculated. Within modality, the results for the two processing methods were significantly correlated in the majority of data sets. Across modality, the average amplitudes of the VEPs and HRs were also significantly correlated. Examination of ST variability demonstrated that the amplitudes of the mean VEPs and HRs are both influenced by the latency variability of the ST responses to a greater extent than the amplitude variability. For high contrast stimuli the latency variability in EEG and fMRI was significantly correlated, with a similar trend seen for the low contrast stimuli. The results confirm the validity of examining both the EEG and fMRI signals on an ST basis and suggest an underlying neuronal origin in both modalities.
NeuroImage | 2009
Tracy Warbrick; Arian Mobascher; Jürgen Brinkmeyer; Francesco Musso; Nils Richter; T. Stoecker; Gereon R. Fink; Nadim Joni Shah; Georg Winterer
Using single-trial parameters as a regressor in the General Linear Model (GLM) is becoming an increasingly popular method for informing fMRI analysis. However, the parameter used to characterise or to differentiate brain regions involved in the response to a particular task varies across studies (e.g. ERP amplitude, ERP latency, reaction time). Furthermore, the way in which the single-trial information is used in the fMRI analysis is also important. For example, the single-trial parameters can be used as regressors in the GLM or to modify the duration of the events modelled in the GLM. The aim of this study was to investigate the BOLD response to a target detection task when including P3 amplitude, P3 latency and reaction time parameters in the GLM. Simultaneous EEG-fMRI was recorded from fifteen subjects in response to a visual choice reaction time task. Including P3 amplitude as a regressor in the GLM yielded activation in left central opercular cortex, left postcentral gyrus, left insula, left middle frontal gyrus, left insula and left parietal operculum. Using P3 latency and reaction time as an additional regressor yielded no additional activation in comparison with the conventional fMRI analysis. However, when P3 latency or reaction time was used to determine the duration of events at a single-trial level, additional activation was observed in the left postcentral gyrus, left precentral gyrus, anterior cingulate cortex and supramarginal gyrus. Our findings suggest that ERP amplitudes and latencies can yield different activation patterns when used to modify relevant aspects of the GLM.