Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy Zimmermann is active.

Publication


Featured researches published by Tracy Zimmermann.


Nature | 2006

RNAi-mediated gene silencing in non-human primates.

Tracy Zimmermann; Amy C. H. Lee; Akin Akinc; Birgit Bramlage; David Bumcrot; Matthew N. Fedoruk; Jens Harborth; James Heyes; Lloyd Jeffs; Matthias John; Adam Judge; Kieu Lam; Kevin McClintock; Lubomir Nechev; Lorne R. Palmer; Timothy Racie; Ingo Röhl; Stephan Seiffert; Sumi Shanmugam; Vandana Sood; Jürgen Soutschek; Ivanka Toudjarska; Amanda J. Wheat; Ed Yaworski; William Zedalis; Victor Koteliansky; Muthiah Manoharan; Hans-Peter Vornlocher; Ian Maclachlan

The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg-1. A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.


Nature Biotechnology | 2008

A combinatorial library of lipid-like materials for delivery of RNAi therapeutics

Akin Akinc; Andreas Zumbuehl; Michael Goldberg; Elizaveta S. Leshchiner; Valentina Busini; Naushad Hossain; Sergio Bacallado; David N. Nguyen; Jason Fuller; Rene Alvarez; Anna Borodovsky; Todd Borland; Rainer Constien; Antonin de Fougerolles; J. Robert Dorkin; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Matthias John; Victor Koteliansky; Muthiah Manoharan; Lubomir Nechev; June Qin; Timothy Racie; Denitza Raitcheva; Kallanthottathil G. Rajeev; Dinah Sah; Jürgen Soutschek; Ivanka Toudjarska; Hans-Peter Vornlocher; Tracy Zimmermann

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2′-O-methyl (2′-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Nature Biotechnology | 2007

Mechanisms and optimization of in vivo delivery of lipophilic siRNAs

Christian Wolfrum; Shuanping Shi; K. Narayanannair Jayaprakash; Muthusamy Jayaraman; Gang Wang; Rajendra K. Pandey; Kallanthottathil G. Rajeev; Tomoko Nakayama; Esther Ndungo; Tracy Zimmermann; Victor Koteliansky; Muthiah Manoharan; Markus Stoffel

Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates.

Maria Frank-Kamenetsky; Aldo Grefhorst; Norma N. Anderson; Timothy Racie; Birgit Bramlage; Akin Akinc; David Butler; Klaus Charisse; Robert Dorkin; Yupeng Fan; Christina Gamba-Vitalo; Philipp Hadwiger; Muthusamy Jayaraman; Matthias John; K. Narayanannair Jayaprakash; Martin Maier; Lubomir Nechev; Kallanthottathil G. Rajeev; Timothy Read; Ingo Röhl; Jürgen Soutschek; Pamela Tan; Jamie Wong; Gang Wang; Tracy Zimmermann; Antonin de Fougerolles; Hans Peter Vornlocher; Robert Langer; Daniel G. Anderson; Muthiah Manoharan

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50–70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5′-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.


Journal of the American Chemical Society | 2014

Multivalent N‑Acetylgalactosamine-Conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-Mediated Gene Silencing

Jayaprakash K. Nair; Jennifer L. S. Willoughby; Amy Chan; Klaus Charisse; Md. Rowshon Alam; Qianfan Wang; Menno Hoekstra; Pachamuthu Kandasamy; Alexander V. Kel’in; Nate Taneja; Jonathan O′Shea; Sarfraz Shaikh; Ligang Zhang; Ronald J. van der Sluis; Michael E. Jung; Akin Akinc; Renta Hutabarat; Satya Kuchimanchi; Kevin Fitzgerald; Tracy Zimmermann; Theo J.C. van Berkel; Martin Maier; Kallanthottathil G. Rajeev; Muthiah Manoharan

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


Amyloid | 2016

Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis

James Butler; Amy Chan; Susete Costelha; Shannon Fishman; Jennifer L. S. Willoughby; Todd Borland; Donald J. Foster; Paula Gonçalves; Qingmin Chen; June Qin; Brian Bettencourt; Dinah Sah; Rene Alvarez; Kallanthottathil G. Rajeev; Muthiah Manoharan; Kevin Fitzgerald; Rachel Meyers; Saraswathy V. Nochur; Maria João Saraiva; Tracy Zimmermann

Abstract ATTR amyloidosis is a systemic, debilitating and fatal disease caused by transthyretin (TTR) amyloid accumulation. RNA interference (RNAi) is a clinically validated technology that may be a promising approach to the treatment of ATTR amyloidosis. The vast majority of TTR, the soluble precursor of TTR amyloid, is expressed and synthesized in the liver. RNAi technology enables robust hepatic gene silencing, the goal of which would be to reduce systemic levels of TTR and mitigate many of the clinical manifestations of ATTR that arise from hepatic TTR expression. To test this hypothesis, TTR-targeting siRNAs were evaluated in a murine model of hereditary ATTR amyloidosis. RNAi-mediated silencing of hepatic TTR expression inhibited TTR deposition and facilitated regression of existing TTR deposits in pathologically relevant tissues. Further, the extent of deposit regression correlated with the level of RNAi-mediated knockdown. In comparison to the TTR stabilizer, tafamidis, RNAi-mediated TTR knockdown led to greater regression of TTR deposits across a broader range of affected tissues. Together, the data presented herein support the therapeutic hypothesis behind TTR lowering and highlight the potential of RNAi in the treatment of patients afflicted with ATTR amyloidosis.


Nucleic Acids Research | 2017

Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc–siRNA conjugates

Jayaprakash K. Nair; Husain Attarwala; Alfica Sehgal; Qianfan Wang; Krishna Aluri; Xuemei Zhang; Minggeng Gao; Ju Liu; Ramesh Indrakanti; Sally Schofield; Philip Kretschmer; Christopher R. Brown; Swati Gupta; Jennifer L. S. Willoughby; Julie A. Boshar; Vasant Jadhav; Klaus Charisse; Tracy Zimmermann; Kevin Fitzgerald; Muthiah Manoharan; Kallanthottathil G. Rajeev; Akin Akinc; Renta Hutabarat; Martin Maier

Abstract Covalent attachment of a synthetic triantennary N-acetylagalactosamine (GalNAc) ligand to chemically modified siRNA has enabled asialoglycoprotein (ASGPR)-mediated targeted delivery of therapeutically active siRNAs to hepatocytes in vivo. This approach has become transformative for the delivery of RNAi therapeutics as well as other classes of investigational oligonucleotide therapeutics to the liver. For efficient functional delivery of intact drug into the desired subcellular compartment, however, it is critical that the nucleic acids are stabilized against nucleolytic degradation. Here, we compared two siRNAs of the same sequence but with different modification pattern resulting in different degrees of protection against nuclease activity. In vitro stability studies in different biological matrices show that 5′-exonuclease is the most prevalent nuclease activity in endo-lysosomal compartments and that additional stabilization in the 5′-regions of both siRNA strands significantly enhances the overall metabolic stability of GalNAc–siRNA conjugates. In good agreement with in vitro findings, the enhanced stability translated into substantially improved liver exposure, gene silencing efficacy and duration of effect in mice. Follow-up studies with a second set of conjugates targeting a different transcript confirmed the previous results, provided additional insights into kinetics of RISC loading and demonstrated excellent translation to non-human primates.


Journal of the American College of Cardiology | 2015

A PHASE 2, MULTI-CENTER, OPEN-LABEL TRIAL TO EVALUATE THE SAFETY, PHARMACOKINETICS, PHARMACODYNAMICS AND EXPLORATORY CLINICAL ACTIVITY OF ALN-TTRSC, AN RNAI THERAPEUTIC FOR THE TREATMENT OF PATIENTS WITH TRANSTHYRETIN CARDIAC AMYLOIDOSIS

Julian D. Gillmore; Rodney H. Falk; Mathew S. Maurer; Mazen Hanna; Verena Karsten; Craig Penz; Tracy Zimmermann; Jared Gollob; Philip N. Hawkins

Transthyretin (TTR) cardiac amyloidosis is an under-recognized form of cardiomyopathy caused by the deposition of liver-derived mutant and/or wild-type (WT) TTR in the myocardium resulting in heart failure and death. The hereditary form, known as familial amyloidotic cardiomyopathy (FAC), is most


Endocrinology | 2017

Ablation of Hepatic Production of the Acid-Labile Subunit in Bovine-GH Transgenic Mice: Effects on Organ and Skeletal Growth

Zhongbo Liu; Tianzhen Han; Shannon Fishman; James Butler; Tracy Zimmermann; Frédéric Tremblay; Carole E. Harbison; Nidhi Agrawal; John J. Kopchick; Mitchell B. Schaffler; Shoshana Yakar

Growth hormone (GH) and insulinlike growth factor 1 (IGF-1) are anabolic hormones that facilitate somatic and skeletal growth and regulate metabolism via endocrine and autocrine/paracrine mechanisms. We hypothesized that excess tissue production of GH would protect skeletal growth and integrity in states of reduction in serum IGF-1 levels. To test our hypothesis, we used bovine GH (bGH) transgenic mice as a model of GH hypersecretion and ablated the liver-derived acid-labile subunit, which stabilizes IGF-1 complexes with IGF-binding protein-3 and -5 in circulation. We used a genetic approach to create bGH/als gene knockout (ALSKO) mice and small interfering RNA (siRNA) gene-silencing approach to reduce als or igf-1 gene expression. We found that in both models, decreased IGF-1 levels in serum were associated with decreased body and skeletal size of the bGH mice. Excess GH produced more robust bones but compromised mechanical properties in male mice. Excess GH production in tissues did not protect from trabecular bone loss in response to reductions in serum IGF-1 (in bGH/ALSKO or bGH mice treated with siRNAs). Reduced serum IGF-1 levels in the bGH mice did not alleviate the hyperinsulinemia and did not resolve liver or kidney pathologies that resulted from GH hypersecretion. We concluded that reduced serum IGF-1 levels decrease somatic and skeletal growth even in states of excess GH.


Molecular Therapy | 2018

Evaluation of GalNAc-siRNA Conjugate Activity in Pre-clinical Animal Models with Reduced Asialoglycoprotein Receptor Expression

Jennifer L. S. Willoughby; Amy Chan; Alfica Sehgal; James Butler; Jayaprakash K. Nair; Tim Racie; Svetlana Shulga-Morskaya; Tuyen Nguyen; Kun Qian; Kristina Yucius; Klaus Charisse; Theo J.C. van Berkel; Muthiah Manoharan; Kallanthottathil G. Rajeev; Martin Maier; Vasant Jadhav; Tracy Zimmermann

The hepatocyte-specific asialoglycoprotein receptor (ASGPR) is an ideal candidate for targeted drug delivery to the liver due to its high capacity for substrate clearance from circulation together with its well-conserved expression and function across species. The development of GalNAc-siRNA conjugates, in which a synthetic triantennary N-acetylgalactosamine-based ligand is conjugated to chemically modified siRNA, has enabled efficient, ASGPR-mediated delivery to hepatocytes. To investigate the potential impact of variations in receptor expression on the efficiency of GalNAc-siRNA conjugate delivery, we evaluated the pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates in multiple pre-clinical models with reduced receptor expression. Despite greater than 50% reduction in ASGPR levels, GalNAc conjugate activity was retained, suggesting that the remaining receptor capacity was sufficient to mediate efficient uptake of potent GalNAc-siRNAs at pharmacologically relevant dose levels. Collectively, our data support a broad application of the GalNAc-siRNA technology for hepatic targeting, including disease states where ASGPR expression may be reduced.

Collaboration


Dive into the Tracy Zimmermann's collaboration.

Top Co-Authors

Avatar

Muthiah Manoharan

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Maier

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akin Akinc

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Amy Chan

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge