Trang T. Ly
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trang T. Ly.
JAMA | 2013
Trang T. Ly; Jennifer A. Nicholas; Adam Retterath; Ee Mun Lim; Elizabeth A. Davis; Timothy W. Jones
IMPORTANCE Hypoglycemia is a critical obstacle to the care of patients with type 1 diabetes. Sensor-augmented insulin pump with automated low-glucose insulin suspension has the potential to reduce the incidence of major hypoglycemic events. OBJECTIVE To determine the incidence of severe and moderate hypoglycemia with sensor-augmented pump with low-glucose suspension compared with standard insulin pump therapy. DESIGN, SETTING, AND PARTICIPANTS A randomized clinical trial involving 95 patients with type 1 diabetes, recruited from December 2009 to January 2012 in Australia. INTERVENTIONS Patients were randomized to insulin pump only or automated insulin suspension for 6 months. MAIN OUTCOMES AND MEASURES The primary outcome was the combined incidence of severe (hypoglycemic seizure or coma) and moderate hypoglycemia (an event requiring assistance for treatment). In a subgroup, counterregulatory hormone responses to hypoglycemia were assessed using the hypoglycemic clamp technique. RESULTS Of the 95 patients randomized, 49 were assigned to the standard-pump (pump-only) therapy and 46 to the low-glucose suspension group. The mean (SD) age was 18.6 (11.8) years; duration of diabetes, 11.0 (8.9) years; and duration of pump therapy, 4.1 (3.4) years. The baseline rate of severe and moderate hypoglycemic events in the pump-only group was 20.7 vs 129.6 events per 100 patient months in the low-glucose suspension group. After 6 months of treatment, the event rates decreased from 28 to 16 in the pump-only group vs 175 to 35 in the low-glucose suspension group. The adjusted incidence rate per 100 patient-months was 34.2 (95% CI, 22.0-53.3) for the pump-only group vs 9.5 (95% CI, 5.2-17.4) for the low-glucose suspension group. The incidence rate ratio was 3.6 (95% CI, 1.7-7.5; P <.001). There was no change in glycated hemoglobin in either group: mean, 7.4 (95% CI, 7.2-7.6) to 7.4 (95% CI, 7.2-7.7) in the pump-only group vs mean, 7.6 (95%, CI, 7.4-7.9) to 7.5 (95% CI, 7.3-7.7) in the low-glucose suspension group. Counterregulatory hormone responses to hypoglycemia were not changed. There were no episodes of diabetic ketoacidosis or hyperglycemia with ketosis. CONCLUSIONS AND RELEVANCE Sensor-augmented pump therapy with automated insulin suspension reduced the combined rate of severe and moderate hypoglycemia in patients with type 1 diabetes. TRIAL REGISTRATION anzctr.org.au Identifier: ACTRN12610000024044.
Diabetes Care | 2014
Trang T. Ly; Marc D. Breton; Patrick Keith-Hynes; Daniel De Salvo; Paula Clinton; Kari Benassi; Benton Mize; Daniel Chernavvsky; Jerome Place; Darrell M. Wilson; Boris P. Kovatchev; Bruce Buckingham
OBJECTIVE To determine the safety and efficacy of an automated unified safety system (USS) in providing overnight closed-loop (OCL) control in children and adolescents with type 1 diabetes attending diabetes summer camps. RESEARCH DESIGN AND METHODS The Diabetes Assistant (DIAS) USS used the Dexcom G4 Platinum glucose sensor (Dexcom) and t:slim insulin pump (Tandem Diabetes Care). An initial inpatient study was completed for 12 participants to evaluate safety. For the main camp study, 20 participants with type 1 diabetes were randomized to either OCL or sensor-augmented therapy (control conditions) per night over the course of a 5- to 6-day diabetes camp. RESULTS Subjects completed 54 OCL nights and 52 control nights. On an intention-to-treat basis, with glucose data analyzed regardless of system status, the median percent time in range, from 70–150 mg/dL, was 62% (29, 87) for OCL nights versus 55% (25, 80) for sensor-augmented pump therapy (P = 0.233). A per-protocol analysis allowed for assessment of algorithm performance. The median percent time in range, from 70–150 mg/dL, was 73% (50, 89) for OCL nights (n = 41) versus 52% (24, 83) for control conditions (n = 39) (P = 0.037). There was less time spent in the hypoglycemic range <50, <60, and <70 mg/dL during OCL compared with the control period (P = 0.019, P = 0.009, and P = 0.023, respectively). CONCLUSIONS The DIAS USS algorithm is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting.
Diabetes Care | 2012
Michael J. O'Grady; Adam Retterath; D. Barry Keenan; Natalie Kurtz; Martin Cantwell; Glenn Spital; Michael Kremliovsky; Anirban Roy; Elizabeth A. Davis; Timothy W. Jones; Trang T. Ly
OBJECTIVE A key milestone in progress towards providing an efficacious and safe closed-loop artificial pancreas system for outpatient use is the development of fully automated, portable devices with fault detection capabilities to ensure patient safety. The ability to remotely monitor the operation of the closed-loop system would facilitate future physician-supervised home studies. RESEARCH DESIGN AND METHODS This study was designed to investigate the efficacy and safety of a fully automated, portable, closed-loop system. The Medtronic Portable Glucose Control System (PGCS) consists of two subcutaneous glucose sensors, a control algorithm based on proportional-integral-derivative with insulin feedback operating from a BlackBerry Storm smartphone platform, Bluetooth radiofrequency translator, and an off-the-shelf Medtronic Paradigm Veo insulin pump. Participants with type 1 diabetes using insulin pump therapy underwent two consecutive nights of in-clinic, overnight, closed-loop control after a baseline open-loop assessment. RESULTS Eight participants attended for 16 overnight studies. The PGCS maintained mean overnight plasma glucose levels of 6.4 ± 1.7 mmol/L (115 ± 31 mg/dL). The proportion of time with venous plasma glucose <3.9, between 3.9 and 8 (70 and 144 mg/dL), and >8 mmol/L was 7, 78, and 15%, respectively. The proportion of time the sensor glucose values were maintained between 3.9 and 8 mmol/L was greater for closed-loop than open-loop (84.5 vs. 46.7%; P < 0.0001), and time spent <3.3 mmol/L was also reduced (0.9 vs. 3%; P < 0.0001). CONCLUSIONS These results suggest that the PGCS, an automated closed-loop device, is safe and effective in achieving overnight glucose control in patients with type 1 diabetes.
Diabetes Care | 2015
Trang T. Ly; Anirban Roy; Benyamin Grosman; John H. Shin; Alex Campbell; Salman Monirabbasi; Bradley C. Liang; Rie von Eyben; Satya Shanmugham; Paula Clinton; Bruce Buckingham
OBJECTIVE To evaluate the feasibility and efficacy of a fully integrated hybrid closed-loop (HCL) system (Medtronic MiniMed Inc., Northridge, CA), in day and night closed-loop control in subjects with type 1 diabetes, both in an inpatient setting and during 6 days at diabetes camp. RESEARCH DESIGN AND METHODS The Medtronic MiniMed HCL system consists of a fourth generation (4S) glucose sensor, a sensor transmitter, and an insulin pump using a modified proportional-integral-derivative (PID) insulin feedback algorithm with safety constraints. Eight subjects were studied over 48 h in an inpatient setting. This was followed by a study of 21 subjects for 6 days at diabetes camp, randomized to either the closed-loop control group using the HCL system or to the group using the Medtronic MiniMed 530G with threshold suspend (control group). RESULTS The overall mean sensor glucose percent time in range 70–180 mg/dL was similar between the groups (73.1% vs. 69.9%, control vs. HCL, respectively) (P = 0.580). Meter glucose values between 70 and 180 mg/dL were also similar between the groups (73.6% vs. 63.2%, control vs. HCL, respectively) (P = 0.086). The mean absolute relative difference of the 4S sensor was 10.8 ± 10.2%, when compared with plasma glucose values in the inpatient setting, and 12.6 ± 11.0% compared with capillary Bayer CONTOUR NEXT LINK glucose meter values during 6 days at camp. CONCLUSIONS In the first clinical study of this fully integrated system using an investigational PID algorithm, the system did not demonstrate improved glucose control compared with sensor-augmented pump therapy alone. The system demonstrated good connectivity and improved sensor performance.
Diabetes Care | 2015
Bruce Buckingham; Dan Raghinaru; Fraser Cameron; B. Wayne Bequette; H. Peter Chase; David M. Maahs; Robert H. Slover; R. Paul Wadwa; Darrell M. Wilson; Trang T. Ly; Tandy Aye; Irene Hramiak; Cheril Clarson; Robert Stein; Patricia H. Gallego; John Lum; Judy Sibayan; Craig Kollman; Roy W. Beck
OBJECTIVE Nocturnal hypoglycemia can cause seizures and is a major impediment to tight glycemic control, especially in young children with type 1 diabetes. We conducted an in-home randomized trial to assess the efficacy and safety of a continuous glucose monitor–based overnight predictive low-glucose suspend (PLGS) system. RESEARCH DESIGN AND METHODS In two age-groups of children with type 1 diabetes (11–14 and 4–10 years of age), a 42-night trial for each child was conducted wherein each night was assigned randomly to either having the PLGS system active (intervention night) or inactive (control night). The primary outcome was percent time <70 mg/dL overnight. RESULTS Median time at <70 mg/dL was reduced by 54% from 10.1% on control nights to 4.6% on intervention nights (P < 0.001) in 11–14-year-olds (n = 45) and by 50% from 6.2% to 3.1% (P < 0.001) in 4–10-year-olds (n = 36). Mean overnight glucose was lower on control versus intervention nights in both age-groups (144 ± 18 vs. 152 ± 19 mg/dL [P < 0.001] and 153 ± 14 vs. 160 ± 16 mg/dL [P = 0.004], respectively). Mean morning blood glucose was 159 ± 29 vs. 176 ± 28 mg/dL (P < 0.001) in the 11–14-year-olds and 154 ± 25 vs. 158 ± 22 mg/dL (P = 0.11) in the 4–10-year-olds, respectively. No differences were found between intervention and control in either age-group in morning blood ketosis. CONCLUSIONS In 4–14-year-olds, use of a nocturnal PLGS system can substantially reduce overnight hypoglycemia without an increase in morning ketosis, although overnight mean glucose is slightly higher.
Diabetes Care | 2011
Trang T. Ly; Jacqueline Hewitt; Raymond J. Davey; Ee Mun Lim; Elizabeth A. Davis; Timothy W. Jones
OBJECTIVE To determine whether real-time continuous glucose monitoring (CGM) with preset alarms at specific glucose levels would prove a useful tool to achieve avoidance of hypoglycemia and improve the counterregulatory response to hypoglycemia in adolescents with type 1 diabetes with hypoglycemia unawareness. RESEARCH DESIGN AND METHODS Adolescents with type 1 diabetes with hypoglycemia unawareness underwent hyperinsulinemic hypoglycemic clamp studies at baseline to determine their counterregulatory hormone responses to hypoglycemia. Subjects were then randomized to either standard therapy or real-time CGM for 4 weeks. The clamp study was then repeated. RESULTS The epinephrine response during hypoglycemia after the intervention was greater in the CGM group than in the standard therapy group. CONCLUSIONS A greater epinephrine response during hypoglycemia suggests that real-time CGM is a useful clinical tool to improve hypoglycemia unawareness in adolescents with type 1 diabetes.
Diabetes Care | 2012
Trang T. Ly; Jennifer A. Nicholas; Adam Retterath; Elizabeth A. Davis; Timothy W. Jones
OBJECTIVE The advent of sensor-augmented pump therapy with a low-glucose suspend (LGS) function (Medtronic Paradigm Veo System), allowing insulin to be automatically suspended for up to 2 h when sensor glucose falls below a preset threshold, has the potential to reduce the duration of hypoglycemia. In this article, we analyzed blood glucose profiles following a full 2-h insulin suspension activated by the LGS function, as well as examined different patterns of use among patients. RESEARCH DESIGN AND METHODS Data from a cohort of participants using the Veo System for up to 6 months were analyzed to determine the time and duration of insulin suspension activated by the LGS function. We further evaluated overnight suspend events with no patient response occurring prior to 3:00 a.m., which allowed us to determine the pattern of sensor glucose values with no patient intervention during and after the period of insulin suspension. RESULTS There were 3,128 LGS events during the 2,493 days evaluated. The median duration was 11.2 min, and 36% of events occurred overnight. There were 126 full 2-h suspend events that occurred overnight with no patient response, occurring before 3:00 a.m. For these events, the mean sensor glucose at the end of the 2-h suspend period was 99 ± 6 mg/dL ([means ± SE] 5.5 ± 0.3 mmol/L). The mean sensor glucose 2 h after insulin delivery resumed was 155 ± 10 mg/dL (8.6 ± 0.6 mmol/L). There were no episodes of severe hypoglycemia or diabetic ketoacidosis. CONCLUSIONS Analyses of sensor glucose patterns following insulin suspension activated by LGS suggest that this technology is safe and unlikely to be associated with adverse outcomes.
The Lancet | 2017
Firas H. El-Khatib; Courtney Balliro; Mallory A. Hillard; Kendra L. Magyar; Laya Ekhlaspour; Manasi Sinha; Debbie Mondesir; Aryan Esmaeili; Celia Hartigan; Michael Thompson; Samir Malkani; J Paul Lock; David M. Harlan; Paula Clinton; Eliana Frank; Darrell M. Wilson; Daniel J. DeSalvo; Lisa Norlander; Trang T. Ly; Bruce Buckingham; Jamie Diner; Milana Dezube; Laura A. Young; April Goley; M. Sue Kirkman; John B. Buse; Hui Zheng; Rajendranath Selagamsetty; Edward R. Damiano; Steven J. Russell
BACKGROUND The safety and effectiveness of a continuous, day-and-night automated glycaemic control system using insulin and glucagon has not been shown in a free-living, home-use setting. We aimed to assess whether bihormonal bionic pancreas initialised only with body mass can safely reduce mean glycaemia and hypoglycaemia in adults with type 1 diabetes who were living at home and participating in their normal daily routines without restrictions on diet or physical activity. METHODS We did a random-order crossover study in volunteers at least 18 years old who had type 1 diabetes and lived within a 30 min drive of four sites in the USA. Participants were randomly assigned (1:1) in blocks of two using sequentially numbered sealed envelopes to glycaemic regulation with a bihormonal bionic pancreas or usual care (conventional or sensor-augmented insulin pump therapy) first, followed by the opposite intervention. Both study periods were 11 days in length, during which time participants continued all normal activities, including athletics and driving. The bionic pancreas was initialised with only the participants body mass. Autonomously adaptive dosing algorithms used data from a continuous glucose monitor to control subcutaneous delivery of insulin and glucagon. The coprimary outcomes were the mean glucose concentration and time with continuous glucose monitoring (CGM) glucose concentration less than 3·3 mmol/L, analysed over days 2-11 in participants who completed both periods of the study. This trial is registered with ClinicalTrials.gov, number NCT02092220. FINDINGS We randomly assigned 43 participants between May 6, 2014, and July 3, 2015, 39 of whom completed the study: 20 who were assigned to bionic pancreas first and 19 who were assigned to the comparator first. The mean CGM glucose concentration was 7·8 mmol/L (SD 0·6) in the bionic pancreas period versus 9·0 mmol/L (1·6) in the comparator period (difference 1·1 mmol/L, 95% CI 0·7-1·6; p<0·0001), and the mean time with CGM glucose concentration less than 3·3 mmol/L was 0·6% (0·6) in the bionic pancreas period versus 1·9% (1·7) in the comparator period (difference 1·3%, 95% CI 0·8-1·8; p<0·0001). The mean nausea score on the Visual Analogue Scale (score 0-10) was greater during the bionic pancreas period (0·52 [SD 0·83]) than in the comparator period (0·05 [0·17]; difference 0·47, 95% CI 0·21-0·73; p=0·0024). Body mass and laboratory parameters did not differ between periods. There were no serious or unexpected adverse events in the bionic pancreas period of the study. INTERPRETATION Relative to conventional and sensor-augmented insulin pump therapy, the bihormonal bionic pancreas, initialised only with participant weight, was able to achieve superior glycaemic regulation without the need for carbohydrate counting. Larger and longer studies are needed to establish the long-term benefits and risks of automated glycaemic management with a bihormonal bionic pancreas. FUNDING National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, and National Center for Advancing Translational Sciences.
Diabetes Care | 2016
Stacey M. Anderson; Dan Raghinaru; Jordan E. Pinsker; Federico Boscari; Eric Renard; Bruce Buckingham; Revital Nimri; Francis J. Doyle; Sue A. Brown; Patrick Keith-Hynes; Marc D. Breton; Daniel Chernavvsky; Wendy C. Bevier; Paige K. Bradley; Daniela Bruttomesso; Simone Del Favero; Roberta Calore; Claudio Cobelli; Angelo Avogaro; Anne Farret; Jerome Place; Trang T. Ly; Satya Shanmugham; Moshe Phillip; Eyal Dassau; Isuru Dasanayake; Craig Kollman; John Lum; Roy W. Beck; Boris P. Kovatchev
OBJECTIVE To evaluate the efficacy of a portable, wearable, wireless artificial pancreas system (the Diabetes Assistant [DiAs] running the Unified Safety System) on glucose control at home in overnight-only and 24/7 closed-loop control (CLC) modes in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS At six clinical centers in four countries, 30 participants 18–66 years old with type 1 diabetes (43% female, 96% non-Hispanic white, median type 1 diabetes duration 19 years, median A1C 7.3%) completed the study. The protocol included a 2-week baseline sensor-augmented pump (SAP) period followed by 2 weeks of overnight-only CLC and 2 weeks of 24/7 CLC at home. Glucose control during CLC was compared with the baseline SAP. RESULTS Glycemic control parameters for overnight-only CLC were improved during the nighttime period compared with baseline for hypoglycemia (time <70 mg/dL, primary end point median 1.1% vs. 3.0%; P < 0.001), time in target (70–180 mg/dL: 75% vs. 61%; P < 0.001), and glucose variability (coefficient of variation: 30% vs. 36%; P < 0.001). Similar improvements for day/night combined were observed with 24/7 CLC compared with baseline: 1.7% vs. 4.1%, P < 0.001; 73% vs. 65%, P < 0.001; and 34% vs. 38%, P < 0.001, respectively. CONCLUSIONS CLC running on a smartphone (DiAs) in the home environment was safe and effective. Overnight-only CLC reduced hypoglycemia and increased time in range overnight and increased time in range during the day; 24/7 CLC reduced hypoglycemia and increased time in range both overnight and during the day. Compared with overnight-only CLC, 24/7 CLC provided additional hypoglycemia protection during the day.
Diabetes Care | 2011
Trang T. Ly; Mike Anderson; Kaitrin Ar McNamara; Elizabeth A. Davis; Timothy W. Jones
OBJECTIVE The aim of this study was to reexamine the neurocognitive function of a cohort of young adults with early-onset type 1 diabetes and compare their cognitive function to a matched control group. We also examined whether cognitive function was related to prospectively obtained severe hypoglycemia history, long-term glycemic control, or severe diabetic ketoacidosis. RESEARCH DESIGN AND METHODS Testing included Wechsler Intelligence Scale for Children and Adults, Wechsler Memory Scale, Cattell Culture Fair Intelligence Test (CCFIT), Wisconsin Card Sorting Test (WCST), youth and adult self-report, and Beck Depression Inventory. We tested 34 control subjects (mean ± SE, age 19.5 ± 0.5 years) and 33 type 1 diabetic subjects (age 19.3 ± 0.5 years, age at type 1 diabetes onset 3.3 ± 0.3 years, A1C from diagnosis 8.7 ± 0.1%, and diabetes duration 16.0 ± 0.5 years). RESULTS There was no difference in full-scale IQ scores in type 1 diabetic and control subjects (100.7 ± 2.0 vs. 102.5 ± 1.4). There was no difference between groups in memory subtests or in reporting of emotional and behavioral difficulties. The type 1 diabetes group scored lower on the CCFIT for fluid intelligence compared with control subjects (P = 0.028) and also scored lower on WCST with more perseverative errors (P = 0.002) and fewer categories completed (P = 0.022). CONCLUSIONS These data suggest no difference in general intellectual ability, memory, and emotional difficulties in our cohort of young adults with early-onset type 1 diabetes compared with control subjects and no deterioration over time. There were, however, findings to suggest subtle changes leading to poorer performance on complex tasks of executive function.