Travis J. Bailey
University of Notre Dame
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Travis J. Bailey.
Trends in Genetics | 2013
Matthew Gemberling; Travis J. Bailey; David R. Hyde; Kenneth D. Poss
For centuries, philosophers and scientists have been fascinated by the principles and implications of regeneration in lower vertebrate species. Two features have made zebrafish an informative model system for determining mechanisms of regenerative events. First, they are highly regenerative, able to regrow amputated fins, as well as a lesioned brain, retina, spinal cord, heart, and other tissues. Second, they are amenable to both forward and reverse genetic approaches, with a research toolset regularly updated by an expanding community of zebrafish researchers. Zebrafish studies have helped identify new mechanistic underpinnings of regeneration in multiple tissues and, in some cases, have served as a guide for contemplating regenerative strategies in mammals. Here, we review the recent history of zebrafish as a genetic model system for understanding how and why tissue regeneration occurs.
Experimental Eye Research | 2010
Ryan Thummel; Jennifer M. Enright; Sean C. Kassen; Jacob E. Montgomery; Travis J. Bailey; David R. Hyde
The light-damaged zebrafish retina results in the death of photoreceptor cells and the subsequent regeneration of the missing rod and cone cells. Photoreceptor regeneration initiates with asymmetric Müller glial cell division to produce neuronal progenitor cells, which amplify, migrate to the outer nuclear layer (ONL), and differentiate into both classes of photoreceptor cells. In this study, we examined the role of the Pax6 protein in regeneration. In zebrafish, there are two Pax6 proteins, one encoded by the pax6a gene and the other encoded by the pax6b gene. We intravitreally injected and electroporated morpholinos that were complementary to either the pax6a or pax6b mRNA to knockdown the translation of the corresponding protein. Loss of Pax6b expression did not affect Müller glial cell division, but blocked the subsequent first cell division of the neuronal progenitors. In contrast, the paralogous Pax6a protein was required for later neuronal progenitor cell divisions, which maximized the number of neuronal progenitors. Without neuronal progenitor cell amplification, proliferation of resident ONL rod precursor cells, which can only regenerate rods, increased inversely proportional to the number of INL neuronal progenitor cells. This confirmed that Müller glial-derived neuronal progenitor cells are necessary to regenerate cones and that distinct mechanisms selectively regenerate rod and cone photoreceptors. This work also defines distinct roles for Pax6a and Pax6b in regulating neuronal progenitor cell proliferation in the adult zebrafish retina and increases our understanding of the molecular pathways required for photoreceptor cell regeneration.
The Journal of Neuroscience | 2013
Craig M. Nelson; Kristin M. Ackerman; Patrick O'Hayer; Travis J. Bailey; Ryne A. Gorsuch; David R. Hyde
Intense light exposure causes photoreceptor apoptosis in dark-adapted adult albino zebrafish (Danio rerio). Subsequently, Müller glia increase expression of the Achaete-scute complex-like 1a (Ascl1a) and Signal transducer and activator of transcription 3 (Stat3) transcription factors and re-enter the cell cycle to yield undifferentiated neuronal progenitors that continue to proliferate, migrate to the outer nuclear layer, and differentiate into photoreceptors. A proteomic analysis of light-damaged retinal homogenates, which induced Müller glia proliferation when injected into an undamaged eye, revealed increased expression of tumor necrosis factor α (TNFα) signaling proteins relative to undamaged retinal homogenates. TNFα expression initially increased in apoptotic photoreceptors and later in Müller glia. Morpholino-mediated knockdown of TNFα expression before light damage diminished the expression of both Ascl1a and Stat3 in Müller glia and significantly reduced the number of proliferating Müller glia without affecting photoreceptor cell death. Knockdown of TNFα expression in the Müller glia resulted in fewer proliferating Müller glia, suggesting that Müller glial-derived TNFα recruited additional Müller glia to re-enter the cell cycle. While TNFα is required for increased Ascl1a and Stat3 expression, Ascl1a and Stat3 are both necessary for TNFα expression in Müller glia. Apoptotic inner retinal neurons, resulting from intravitreal injection of ouabain, also exhibited increased TNFα expression that was required for Müller glia proliferation. Thus, TNFα is the first molecule identified that is produced by dying retinal neurons and is necessary to induce Müller glia to proliferate in the zebrafish retinal regeneration response.
Experimental Eye Research | 2010
Travis J. Bailey; Sara L. Fossum; Shane M. Fimbel; Jacob E. Montgomery; David R. Hyde
The damaged zebrafish retina replaces lost neurons through a regenerative response that initiates with the asymmetric cell division of Müller glia to produce neuronal progenitor cells that proliferate and migrate to the damaged retinal layer, where they differentiate into the lost neuronal cell types. Because Müller glia are known to phagocytose apoptotic retinal cells during development, we tested if Müller glia engulfed apoptotic rod cell bodies in light-damaged retinas. After 24h of constant intense light, damaged retinas revealed both a strong nuclear TUNEL signal in photoreceptors and a weak cytoplasmic TUNEL signal in Müller glia, although Müller glial apoptosis is not observed in the light-damaged retina. Light damage of a rod-specific transgenic reporter line, Tg(XlRho:EGFP)(fl1), resulted in some Müller glia containing both TUNEL signal and EGFP, which indicated that this subset of Müller glia engulfed apoptotic photoreceptor cell bodies. To determine if phagocytosis induced the Müller glial proliferative response in the light-damaged retina, we utilized O-phospho-l-serine (L-SOP), a molecule that mimics the phosphatidylserine head group and partially blocks microglial phagocytosis of apoptotic cells. Intravitreal injection of L-SOP immediately prior to beginning constant intense light treatment: i) did not significantly reduce light-induced photoreceptor cell death, ii) significantly reduced the number of PCNA-positive Müller glia, and iii) significantly reduced the number of cone photoreceptors in the regenerated retina relative to control retinas. Because L-SOP is also a specific group III metabotropic glutamate receptor (mGluR) agonist, we also tested if the more potent specific group III agonist, L-2-amino-4-phosphonobutyrate (L-AP4), the specific group III antagonist (RS)-α-Methylserine-O-phosphate (MSOP) or the specific group I antagonist, L-2-amino-3-phophonopropanoic acid (L-AP3) affected Müller glial proliferation. We found no changes with any of these factors compared to control retinas, revealing that metabotropic glutamate receptors were not necessary in the Müller glia proliferative response. Furthermore, ascl1a and stat3 expression were unaffected in either the L-SOP or MSOP-injected retinas relative to controls, suggesting L-SOP disrupts Müller glia proliferation subsequent to or in parallel with ascl1a and stat3 activation. This implies that at least one signaling mechanism, in addition to the process disrupted by L-SOP, is required to activate Müller glia proliferation in the light-damaged retina.
The Journal of Comparative Neurology | 2012
Craig M. Nelson; Ryne A. Gorsuch; Travis J. Bailey; Kristin M. Ackerman; Sean C. Kassen; David R. Hyde
We analyzed the role of Stat3, Ascl1a, and Lin28a in Müller glia reentry into the cell cycle following damage to the zebrafish retina. Immunohistochemical analysis was employed to determine the temporal and spatial expression of Stat3 and Ascl1a proteins following rod and cone photoreceptor cell apoptosis. Stat3 expression was observed in all Müller glia, whereas Ascl1a expression was restricted to only the mitotic Müller glia. Knockdown of Stat3 protein expression did not affect photoreceptor apoptosis, but significantly reduced, without abolishing, the number of proliferating Ascl1a‐positive Müller glia. Knockdown of Ascl1a protein also did not change the extent of photoreceptor apoptosis, but did yield significantly fewer Müller glia that reentered the cell cycle relative to the stat3 morphant and significantly decreased the number and intensity of Stat3‐expressing Müller glia. Finally, introduction of lin28a morpholinos resulted in decreased Müller glia expression of Stat3 and Ascl1a, significantly reducing the number of proliferating Müller glia. Thus, there are three populations of Müller glia in the light‐damaged zebrafish retina: 1) Stat3‐expressing Ascl1a‐nonexpressing nonproliferating (quiescent) Müller glia; 2) Stat3‐dependent Ascl1a‐dependent proliferating Müller glia; and 3) Stat3‐independent Ascl1a‐dependent proliferating Müller glia. Whereas Ascl1a and Lin28a are required for Müller glia proliferation, Stat3 is necessary for the maximal number of Müller glia to proliferate during regeneration of the damaged zebrafish retina. J. Comp. Neurol. 520:4294–4311, 2012.
Investigative Ophthalmology & Visual Science | 2012
Travis J. Bailey; Darin H. Davis; Joseph E. Vance; David R. Hyde
PURPOSE These experiments assessed the ability of spectral-domain optical coherence tomography (SD-OCT) to accurately represent the structural organization of the adult zebrafish retina and reveal the dynamic morphologic changes during either light-induced damage and regeneration of photoreceptors or ouabain-induced inner retinal damage. METHODS Retinas of control dark-adapted adult albino zebrafish were compared with retinas subjected to 24 hours of constant intense light and recovered for up to 8 weeks or ouabain-damaged retinas that recovered for up to 3 weeks. Images were captured and the measurements of retinal morphology were made by SD-OCT, and then compared with those obtained by histology of the same eyes. RESULTS Measurements between SD-OCT and histology were very similar for the undamaged, damaged, and regenerating retinas. Axial measurements of SD-OCT also revealed vitreal morphology that was not readily visualized by histology. CONCLUSIONS SD-OCT accurately represented retinal lamination and photoreceptor loss and recovery during light-induced damage and subsequent regeneration. SD-OCT was less accurate at detecting the inner nuclear layer in ouabain-damaged retinas, but accurately detected the undamaged outer nuclear layer. Thus, SD-OCT provides a noninvasive and quantitative method to assess the morphology and the extent of damage and repair in the zebrafish retina.
Developmental Dynamics | 2014
Kamya Rajaram; Rachel L. Harding; Travis J. Bailey; James G. Patton; David R. Hyde
Background: Adult zebrafish spontaneously regenerate their retinas after damage. Although a number of genes and signaling pathways involved in regeneration have been identified, the exact mechanisms regulating various aspects of regeneration are unclear. microRNAs (miRNAs) were examined for their potential roles in regulating zebrafish retinal regeneration. Results: To investigate the requirement of miRNAs during zebrafish retinal regeneration, we knocked down the expression of Dicer in retinas prior to light‐induced damage. Reduced Dicer expression significantly decreased the number of proliferating Müller glia‐derived neuronal progenitor cells during regeneration. To identify individual miRNAs with roles in neuronal progenitor cell proliferation, we collected retinas at different stages of light damage and performed small RNA high‐throughput sequencing. We identified subsets of miRNAs that were differentially expressed during active regeneration but returned to basal levels once regeneration was completed. We then knocked down five different miRNAs that increased in expression and assessed the effects on retinal regeneration. Reduction of miR‐142b and miR‐146a expression significantly reduced INL proliferation at 51h of light treatment, while knockdown of miR‐7a, miR‐27c, and miR‐31 expression significantly reduced INL proliferation at 72h of constant light. Conclusions: miRNAs exhibit dynamic expression profiles during retinal regeneration and are necessary for neuronal progenitor cell proliferation. Developmental Dynamics 243:1591–1605, 2014.
Advances in Experimental Medicine and Biology | 2014
Travis J. Bailey; David R. Hyde
In a screen to identify zebrafish eye mutants, we isolated the good effort (gef) mutant. The retina of gef embryos is characterized by the successful initiation of the optic primordium and normal retinal development over the first 2 days post fertilization (dpf). The mutant retina, however, fails to continue to grow. Embryos from gef heterozygous incrosses were analyzed for cell death by acridine orange and by TUNEL labeling at 2 dpf. Significantly more TUNEL-positive and acridine orange-labeled dying cells were found in gef mutant embryos at 2 dpf relative to wild-type embryos. Because this time was earlier than any observable gross morphological differences, this cell death was likely the cause of the gross morphological defects. Meiotic mapping localized the mutation interval to a one-megabase interval on zebrafish chromosome 9.
Journal of Visualized Experiments | 2011
Ryan Thummel; Travis J. Bailey; David R. Hyde
Investigative Ophthalmology & Visual Science | 2013
David R. Hyde; Henry Conner; Ryne A. Gorsuch; Kristin M. Ackerman; Travis J. Bailey; Francis Raycroft; Craig M. Nelson