Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trayambak Basak is active.

Publication


Featured researches published by Trayambak Basak.


Proteomics | 2016

Integrating transcriptome and proteome profiling: Strategies and applications.

Dhirendra Kumar; Gourja Bansal; A. Narang; Trayambak Basak; Tahseen Abbas; Debasis Dash

Discovering the gene expression signature associated with a cellular state is one of the basic quests in majority of biological studies. For most of the clinical and cellular manifestations, these molecular differences may be exhibited across multiple layers of gene regulation like genomic variations, gene expression, protein translation and post‐translational modifications. These system wide variations are dynamic in nature and their crosstalk is overwhelmingly complex, thus analyzing them separately may not be very informative. This necessitates the integrative analysis of such multiple layers of information to understand the interplay of the individual components of the biological system. Recent developments in high throughput RNA sequencing and mass spectrometric (MS) technologies to probe transcripts and proteins made these as preferred methods for understanding global gene regulation. Subsequently, improvements in “big‐data” analysis techniques enable novel conclusions to be drawn from integrative transcriptomic‐proteomic analysis. The unified analyses of both these data types have been rewarding for several biological objectives like improving genome annotation, predicting RNA‐protein quantities, deciphering gene regulations, discovering disease markers and drug targets. There are different ways in which transcriptomics and proteomics data can be integrated; each aiming for different research objectives. Here, we review various studies, approaches and computational tools targeted for integrative analysis of these two high‐throughput omics methods.


PLOS ONE | 2013

Identification of Cellular Calcium Binding Protein Calmodulin as a Regulator of Rotavirus A Infection during Comparative Proteomic Study

Shiladitya Chattopadhyay; Trayambak Basak; Mukti Kant Nayak; Gourav Bhardwaj; Anupam Mukherjee; Rahul Bhowmick; Shantanu Sengupta; Oishee Chakrabarti; Nabendu S. Chatterjee; Mamta Chawla-Sarkar

Rotavirus (RV) being the major diarrhoegenic virus causes around 527000 children death (<5years age) worldwide. In cellular environment, viruses constantly adapt and modulate to survive and replicate while the host cell also responds to combat the situation and this results in the differential regulation of cellular proteins. To identify the virus induced differential expression of proteins, 2D-DIGE (Two-dimensional Difference Gel Electrophoresis) based proteomics was used. For this, HT-29 cells were infected with RV strain SA11 for 0 hours, 3 hours and 9 hours post infection (hpi), differentially expressed spots were excised from the gel and identified using MALDI-TOF/TOF mass spectrometry. 2D-DIGE based proteomics study identified 32 differentially modulated proteins, of which 22 were unique. Some of these were validated in HT-29 cell line and in BALB/c mice model. One of the modulated cellular proteins, calmodulin (CaM) was found to directly interact with RV protein VP6 in the presence of Ca2+. Ca2+-CaM/VP6 interaction positively regulates RV propagation since both CaM inhibitor (W-7) and Ca2+ chelator (BAPTA-AM) resulted in decreased viral titers. This study not only identifies differentially modulated cellular proteins upon infection with rotavirus in 2D-DIGE but also confirmed positive engagement of cellular Ca2+/CaM during viral pathogenesis.


Journal of Molecular Biology | 2015

Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β.

Arkadeep Mitra; Trayambak Basak; Shadab Ahmad; Kaberi Datta; Ritwik Datta; Shantanu Sengupta; Sagartirtha Sarkar

Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms.


Journal of Proteomics | 2013

PPAR signaling pathway is a key modulator of liver proteome in pups born to vitamin B12 deficient rats

Shadab Ahmad; K. Anand Kumar; Trayambak Basak; Gourav Bhardwaj; Dilip K. Yadav; A. Lalitha; Giriraj R. Chandak; Manchala Raghunath; Shantanu Sengupta

UNLABELLED Maternal nutritional deficiency in-utero is known to predict risk of complex disorders like cardiovascular disease, diabetes and many neurological disorders in the offspring and vitamin B12 is one such critical micronutrient. Here we performed 2D-DIGE followed by MALDI TOF/TOF analysis to identify proteins that are differentially expressed in liver of pups born to mothers fed vitamin B12 deficient diet vis-à-vis control diet. To further establish causality, we analyzed the effect of B12 rehabilitation at parturition on the protein levels and the phenotype in pups. We identified 38 differentially expressed proteins that were enriched in pathways involved in the regulation of amino acid, lipid and carbohydrate metabolism. Further, three enzymes in the β-oxidation pathway (hydroxyacyl-coenzyme A dehydrogenase, medium-chain specific acyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase) were down-regulated in pups born to mothers fed vitamin B12 deficient diet. We observed age-dependent differential expression of peroxisome proliferator activated-receptor (PPAR) α and γ in the deficient pups. Interestingly, expression of 27 proteins that were differentially expressed was restored to the control levels after rehabilitation of female rats with vitamin B12 from parturition. Our study thus provides the first evidence that maternal vitamin B12 deficiency influences lipid and other micronutrient metabolism in pups through regulation of PPAR signaling pathway. BIOLOGICAL SIGNIFICANCE Maternal vitamin B12 deficiency has been shown to predict the onset of complex disorders like atherosclerosis, type II diabetes etc. in the next generation during their adulthood. We have shown earlier that pups born to female rats fed with vitamin B12 deficient diet were obese and developed high levels of other intermediate traits such as triglycerides, cholesterol etc. that are related to the risk of diabetes and cardiovascular disorders. In this piece of work using differential proteomic approach we have identified the altered metabolic processes in the liver of vitamin B12 deficient pups. We have also documented that the proteins involved in β-oxidation pathway are down-regulated. Further, differential expression of PPARα and PPARγ was evidently documented as the master regulator for the alteration of lipid, amino acid and carbohydrate metabolism during maternal vitamin B12 deficiency.


Journal of Proteomics | 2012

Proteomic analysis of zebrafish (Danio rerio) embryos exposed to cyclosporine A

Ruby P. Ponnudurai; Trayambak Basak; Shadab Ahmad; Gourav Bhardwaj; Rajendra Kumar Chauhan; Ramcharan A. Singh; Mukesh Kumar Lalwani; Sridhar Sivasubbu; Shantanu Sengupta

Cyclosporine A, a potent immunosuppressive agent extensively used to prevent allograft rejections, is under scrutiny due to severe toxic effects. CsA therapy is often continued during pregnancy in conditions such as organ transplantations and autoimmune diseases. Herein, we investigated the effects of CsA on early morphogenesis of zebrafish and identified a spectrum of proteins whose expression was altered in the drug treated embryos. Time-lapse fluorescence imaging of germ-line double transgenic zebrafish embryos treated with CsA revealed severe blood regurgitation in heart chambers, absence of blood circulation in vessels, pericardial and yolk sac edema. We also observed lack of mature blood vessels and down-regulation of endothelial markers in CsA treated embryos. Proteomic analysis using 2D-DIGE followed by mass-spectrometry led to the identification of 37 proteins whose expression was significantly modulated in presence of the drug. These proteins were mostly associated with cytoskeletal/structural assembly, lipid-binding, stress response and metabolism. Furthermore, mRNA expression analysis of eight proteins and Western blotting of actin revealed consistency between the changes observed in protein expression and its corresponding mRNA levels. Our findings demonstrate that CsA administration during early morphogenesis in zebrafish modulates the expression of some proteins which are known to be involved in important physiological processes.


Journal of Proteomics | 2016

Quantitative proteomics revealed novel proteins associated with molecular subtypes of breast cancer.

Shankar Suman; Trayambak Basak; Prachi Gupta; Sanjay Mishra; Vijay Kumar; Shantanu Sengupta; Yogeshwer Shukla

UNLABELLED The early diagnosis and successful treatment of breast cancer (BC) is still a challenging task due to the diverse origin and functional heterogeneity of cancer cells. The heterogeneity of BC may likely to explained by molecular BC subtypes, comprises Luminal-A (LA), Luminal-B (LB), Triple-negative (TN) and HER2-positive (HP), which are governed by a variety of cancer associated pathways. To identify protein signatures in different BC subtypes, we performed isobaric tag for absolute and relative quantitation (iTRAQ) of enriched blood plasma samples of BC subtypes (N=32) and healthy subjects (N=8). After analyses of data, 58 proteins were found to be modulated in BC subtypes from healthy subjects (p<0.05) and among these; Fibronectin (FN1), Alpha-2-macroglobulin (A2M), and Complement component-4-binding protein-alpha (C4BPA) and Complement factor-B (CFB) were selected for validation in BC subtypes and healthy subjects in the independent set of blood plasma (N=100) and tissue samples (N=25). Statistical analysis showed the significant modulation of FN1 and C4BPA in LB, and A2M in TN patients in both plasma as well as tissues comparatively control (p<0.05). Further, FN1 and C4BPA in LB subtype revealed a good diagnostic accuracy in plasma level validation. The receiver operating characteristic (ROC) curve and regression analysis demonstrated that these proteins with associated criterion of expression could act as discriminating signatures among BC subtypes with diagnostic and prognostic relevance. SIGNIFICANCE The heterogeneity of breast cancer (BC) has gained many challenges for successful management of BC, thus, the delineating proteomic alterations BC subtypes may provide great clinical values in diagnostic, prognostic and therapeutics of BC. The findings from the present quantitative proteomic study have deciphered the altered proteomic patterns and their possible molecular interactions in each BC subtype. The study showed a strong association of FN1, A2M, C4BPA and CFB in molecular subtypes of BC, in which, C4BPA and A2M demonstrated a potent signature in blood plasma and tissue samples of LB and TN subtypes in BC patients, respectively. The findings also revealed the altered level expressions of these selected proteins could classify BC subtypes through plasma and tissue based expression analysis in patients and control samples. Hence, these proteins could have clinical importance for the diagnosis and prognosis purposes among molecular BC subtypes.


Biomarkers | 2012

Polymorphisms in transcobalamin II gene is associated with coronary artery disease in Indian population

Gaurav Garg; Jitender Kumar; Vinay Singh Tanwar; Trayambak Basak; Sandeep Seth; Ganesan Karthikeyan; Shantanu Sengupta

Transcobalamin (TCII) is a key enzyme involved in intracellular transport of vitamin B12. We had earlier shown that vitamin B12 levels are associated with Coronary Artery Disease (CAD). Herein, we evaluated the association of four nonsynonymous single nucleotide polymorphisms (SNPs) of TCII gene with CAD in 1398 individuals (589 CAD cases and 809 controls). Using logistic regression, we found that three SNPs (G1196A, C776G and C1043T) were significantly associated with CAD and one (G1196A) with vitamin B12 levels even after controlling for confounding factors. Thus, polymorphisms in TCII gene may play an important role in the etiology of CAD.


Proteomics | 2014

Cross‐compartment proteostasis regulation during redox imbalance induced ER stress

Shuvadeep Maity; Trayambak Basak; Ajay Bhat; Namrata Bhasin; Asmita Ghosh; Kausik Chakraborty; Shantanu Sengupta

Imbalance in protein homeostasis in specific subcellular organelles is alleviated through organelle‐specific stress response pathways. As a canonical example of stress activated pathway, accumulation of misfolded proteins in ER activates unfolded protein response (UPR) in almost all eukaryotic organisms. However, very little is known about the involvement of proteins of other organelles that help to maintain the cellular protein homeostasis during ER stress. In this study, using iTRAQ‐based LC–MS approach, we identified organelle enriched proteins that are differentially expressed in yeast (Saccharomyces cerevisiae) during ER stress in the absence of UPR sensor Ire1p. We have identified about 750 proteins from enriched organelle fraction in three independent iTRAQ experiments. Induction of ER stress resulted in the differential expression of 93 proteins in WT strains, 40 of which were found to be dependent on IRE1. Our study reveals a cross‐talk between ER‐ and mitochondrial proteostasis exemplified by an Ire1p‐dependent induction of Hsp60p, a mitochondrial chaperone. Thus, in this study, we show changes in protein levels in various organelles in response to ER stress. A large fraction of these changes were dependent on canonical UPR signalling through Ire1, highlighting the importance of interorganellar cross‐talk during stress.


Cellular Microbiology | 2017

Tyrosine Phosphorylation Modulates Mitochondrial Chaperonin Hsp60 and Delays Rotavirus NSP4-Mediated Apoptotic Signaling in Host Cells.

Shiladitya Chattopadhyay; Arpita Mukherjee; Upayan Patra; Rahul Bhowmick; Trayambak Basak; Shantanu Sengupta; Mamta Chawla-Sarkar

Phosphoproteomics‐based platforms have been widely used to identify post translational dynamics of cellular proteins in response to viral infection. The present study was undertaken to assess differential tyrosine phosphorylation during early hours of rotavirus (RV) SA11 infection. Heat shock proteins (Hsp60) were found to be enriched in the data set of RV‐SA11 induced differentially tyrosine‐phosphorylated proteins at 2 hr post infection (hpi). Hsp60 was further found to be phosphorylated by an activated form of Src kinase on 227th tyrosine residue, and tyrosine phosphorylation of mitochondrial chaperonin Hsp60 correlated with its proteasomal degradation at 2–2.5hpi. Interestingly, mitochondrial Hsp60 positively influenced translocation of the rotaviral nonstructural protein 4 to mitochondria during RV infections. Phosphorylation and subsequent transient degradation of mitochondrial Hsp60 during early hours of RV‐SA11 infection resulted in inhibition of premature import of nonstructural protein 4 into mitochondria, thereby delaying early apoptosis. Overall, the study highlighted one of the many strategies rotavirus undertakes to prevent early apoptosis and subsequent reduced viral progeny yield.


Journal of Proteomics | 2014

Delineating the effect of host environmental signals on a fully virulent strain of Bacillus anthracis using an integrated transcriptomics and proteomics approach

Gurudutta Panda; Trayambak Basak; Pooja Tanwer; Shantanu Sengupta; Vitor A. P. Martins dos Santos; Rakesh Bhatnagar

UNLABELLED Pathogenic bacteria sense the host environment and regulate expression of virulence-related genes. Environmental signals like temperature, bicarbonate/CO2 and glucose induce toxin production in Bacillus anthracis, but the mechanisms by which these signals contribute to virulence and overall physiological adaptation remains elusive. An integrated, systems level investigation using transcriptomics and iTRAQ-based proteomics was done to assess the effect of temperature, bicarbonate/CO2 and glucose on B. anthracis. Significant changes observed in amino acid, carbohydrate, energy and nucleotide metabolism indicates events of metabolic readjustments by environmental factors. Directed induction of genes involved in polyamine biosynthesis and iron metabolism revealed the redirection of cellular metabolite pool towards iron uptake. Protein levels of glycolytic enzymes, ptsH and Ldh along with transcripts involved in immune evasion (mprF, bNOS, Phospholipases and asnA), cell surface remodeling (rfbABCD, antABCD, and cls) and utilization of lactate (lutABC) and inositol showed constant repression under environmental perturbations. Discrepancies observed in mRNA/protein level of genes involved in glycolysis, protein synthesis, stress response and nucleotide metabolism hinted at the existence of additional regulatory layers and illustrated the utility of an integrated approach. The above findings might assist in the identification of novel adaptive strategies of B. anthracis during host associated survival and pathogenesis. BIOLOGICAL SIGNIFICANCE In this study, the changes observed at both transcript and protein level were quantified and integrated to understand the effect of host environmental factors (host temperature, bicarbonate and glucose) in shaping the physiology and adaptive strategies of a fully virulent strain of B. anthracis for efficient survival and virulence in its host. Perturbations affecting toxin production were found to concordantly affect vital metabolic pathways and several known as well as novel virulence factors. These changes act as a valuable asset for generating testable hypotheses that can be further verified by detailed molecular and mutant studies to identify novel adaptive strategies of B. anthracis during infection. Adaptation of an integrated transcriptomics and proteomics approach also led to the identification of discrepancies between mRNA/protein levels among genes across major functional categories. Few of these discrepancies have been previously reported in literature for model organisms. However their existence in B. anthracis and that too as a result of growth perturbations have not been reported till date. These findings demonstrate a substantial role of regulatory processes post mRNA synthesis via post transcriptional, translational or protein degradation mechanisms. This article is part of a Special Issue entitled: Proteomics of non-model organisms.

Collaboration


Dive into the Trayambak Basak's collaboration.

Top Co-Authors

Avatar

Shantanu Sengupta

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Vinay Singh Tanwar

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Abhijeet Saha

Lady Hardinge Medical College

View shared research outputs
Top Co-Authors

Avatar

Gourav Bhardwaj

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Shadab Ahmad

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Ajay Bhatt

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Ashish Datt Upadhyay

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Ganesan Karthikeyan

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Gaurav Bhardwaj

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Gaurav Garg

Institute of Genomics and Integrative Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge