Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trent M. Woodruff is active.

Publication


Featured researches published by Trent M. Woodruff.


Brain | 2010

Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment

Kevin D. Beck; Hal X. Nguyen; Manuel Galvan; Desirée L. Salazar; Trent M. Woodruff; Aileen J. Anderson

Traumatic injury to the central nervous system results in the disruption of the blood brain/spinal barrier, followed by the invasion of cells and other components of the immune system that can aggravate injury and affect subsequent repair and regeneration. Although studies of chronic neuroinflammation in the injured spinal cord of animals are clinically relevant to most patients living with traumatic injury to the brain or spinal cord, very little is known about chronic neuroinflammation, though several studies have tested the role of neuroinflammation in the acute period after injury. The present study characterizes a novel cell preparation method that assesses, quickly and effectively, the changes in the principal immune cell types by flow cytometry in the injured spinal cord, daily for the first 10 days and periodically up to 180 days after spinal cord injury. These data quantitatively demonstrate a novel time-dependent multiphasic response of cellular inflammation in the spinal cord after spinal cord injury and are verified by quantitative stereology of immunolabelled spinal cord sections at selected time points. The early phase of cellular inflammation is comprised principally of neutrophils (peaking 1 day post-injury), macrophages/microglia (peaking 7 days post-injury) and T cells (peaking 9 days post-injury). The late phase of cellular inflammation was detected after 14 days post-injury, peaked after 60 days post-injury and remained detectable throughout 180 days post-injury for all three cell types. Furthermore, the late phase of cellular inflammation (14-180 days post-injury) did not coincide with either further improvements, or new decrements, in open-field locomotor function after spinal cord injury. However, blockade of chemoattractant C5a-mediated inflammation after 14 days post-injury reduced locomotor recovery and myelination in the injured spinal cord, suggesting that the late inflammatory response serves a reparative function. Together, these data provide new insight into cellular inflammation of spinal cord injury and identify a surprising and extended multiphasic response of cellular inflammation. Understanding the role of this multiphasic response in the pathophysiology of spinal cord injury could be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions.


Shock | 2009

Toll-like receptors in ischemia-reperfusion injury

Thiruma V. Arumugam; Eitan Okun; Sung-Chun Tang; John Thundyil; Stephen M. Taylor; Trent M. Woodruff

Ischemia-reperfusion (I/R) injuries are implicated in a large array of pathological conditions such as myocardial infarction, cerebral stroke, and hepatic, renal, and intestinal ischemia, as well as following cardiovascular and transplant surgeries. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as one of the main contributors to pathogen-induced inflammation and, more recently, injury-induced inflammation. Endogenous ligands such as low-molecular hyaluronic acid, fibronectin, heat shock protein 70, and heparin sulfate were all found to be cleaved in the inflamed tissue and to activate TLR2 and TLR4, initiating an inflammatory response even in the absence of pathogens and infiltrating immune cells. In this review, we discuss the contribution of TLR activation in hepatic, renal, cerebral, intestinal, and myocardial I/R injuries. A greater understanding of the role of TLRs in I/R injuries may aid in the development of specific TLR-targeted therapeutics to treat these conditions.


Molecular Neurodegeneration | 2011

Pathophysiology, treatment, and animal and cellular models of human ischemic stroke

Trent M. Woodruff; John Thundyil; Sung-Chun Tang; Christopher G. Sobey; Stephen M. Taylor; Thiruma V. Arumugam

Stroke is the worlds second leading cause of mortality, with a high incidence of severe morbidity in surviving victims. There are currently relatively few treatment options available to minimize tissue death following a stroke. As such, there is a pressing need to explore, at a molecular, cellular, tissue, and whole body level, the mechanisms leading to damage and death of CNS tissue following an ischemic brain event. This review explores the etiology and pathogenesis of ischemic stroke, and provides a general model of such. The pathophysiology of cerebral ischemic injury is explained, and experimental animal models of global and focal ischemic stroke, and in vitro cellular stroke models, are described in detail along with experimental strategies to analyze the injuries. In particular, the technical aspects of these stroke models are assessed and critically evaluated, along with detailed descriptions of the current best-practice murine models of ischemic stroke. Finally, we review preclinical studies using different strategies in experimental models, followed by an evaluation of results of recent, and failed attempts of neuroprotection in human clinical trials. We also explore new and emerging approaches for the prevention and treatment of stroke. In this regard, we note that single-target drug therapies for stroke therapy, have thus far universally failed in clinical trials. The need to investigate new targets for stroke treatments, which have pleiotropic therapeutic effects in the brain, is explored as an alternate strategy, and some such possible targets are elaborated. Developing therapeutic treatments for ischemic stroke is an intrinsically difficult endeavour. The heterogeneity of the causes, the anatomical complexity of the brain, and the practicalities of the victim receiving both timely and effective treatment, conspire against developing effective drug therapies. This should in no way be a disincentive to research, but instead, a clarion call to intensify efforts to ameliorate suffering and death from this common health catastrophe. This review aims to summarize both the present experimental and clinical state-of-the art, and to guide future research directions.


Molecular Immunology | 2011

Inhibiting the C5-C5a receptor axis.

Trent M. Woodruff; Kutty Selva Nandakumar; Francesco Tedesco

Activation of the complement system is a major pathogenic event that drives various inflammatory responses in numerous diseases. All pathways of complement activation lead to cleavage of the C5 molecule generating the anaphylatoxin C5a and, C5b that subsequently forms the terminal complement complex (C5b-9). C5a exerts a predominant pro-inflammatory activity through interactions with the classical G-protein coupled receptor C5aR (CD88) as well as with the non-G protein coupled receptor C5L2 (GPR77), expressed on various immune and non-immune cells. C5b-9 causes cytolysis through the formation of the membrane attack complex (MAC), and sub-lytic MAC and soluble C5b-9 also possess a multitude of non-cytolytic immune functions. These two complement effectors, C5a and C5b-9, generated from C5 cleavage, are key components of the complement system responsible for propagating and/or initiating pathology in different diseases, including paroxysmal nocturnal hemoglobinuria, rheumatoid arthritis, ischemia-reperfusion injuries and neurodegenerative diseases. Thus, the C5-C5a receptor axis represents an attractive target for drug development. This review provides a comprehensive analysis of different methods of inhibiting the generation of C5a and C5b-9 as well as the signalling cascade of C5a via its receptors. These include the inhibition of C5 cleavage through targeting of C5 convertases or via the C5 molecule itself, as well as blocking the activity of C5a by neutralizing antibodies and pharmacological inhibitors, or by targeting C5a receptors per se. Examples of drugs and naturally occurring compounds used are discussed in relation to disease models and clinical trials. To date, only one such compound has thus far made it to clinical medicine: the anti-C5 antibody eculizumab, for treating paroxysmal nocturnal hemoglobinuria. However, a number of drug candidates are rapidly emerging that are currently in early-phase clinical trials. The C5-C5a axis as a target for drug development is highly promising for the treatment of currently intractable major human diseases.


Journal of Immunology | 2009

Treatment with a C5aR Antagonist Decreases Pathology and Enhances Behavioral Performance in Murine Models of Alzheimer’s Disease

Maria I. Fonseca; Rahasson R. Ager; Shu Hui Chu; Ozkan Yazan; Sam D. Sanderson; Frank M. LaFerla; Stephen M. Taylor; Trent M. Woodruff; Andrea J. Tenner

Alzheimer’s disease (AD) is an age-related dementia, characterized by amyloid plaques, neurofibrillary tangles, neuroinflammation, and neuronal loss in the brain. Components of the complement system, known to produce a local inflammatory reaction, are associated with the plaques and tangles in AD brain, and thus a role for complement-mediated inflammation in the acceleration or progression of disease has been proposed. A complement activation product, C5a, is known to recruit and activate microglia and astrocytes in vitro by activation of a G protein-coupled cell-surface C5aR. Here, oral delivery of a cyclic hexapeptide C5a receptor antagonist (PMX205) for 2–3 mo resulted in substantial reduction of pathological markers such as fibrillar amyloid deposits (49–62%) and activated glia (42–68%) in two mouse models of AD. The reduction in pathology was correlated with improvements in a passive avoidance behavioral task in Tg2576 mice. In 3xTg mice, PMX205 also significantly reduced hyperphosphorylated tau (69%). These data provide the first evidence that inhibition of a proinflammatory receptor-mediated function of the complement cascade (i.e., C5aR) can interfere with neuroinflammation and neurodegeneration in AD rodent models, suggesting a novel therapeutic target for reducing pathology and improving cognitive function in human AD patients.


Journal of Immunology | 2003

A Potent Human C5a Receptor Antagonist Protects against Disease Pathology in a Rat Model of Inflammatory Bowel Disease

Trent M. Woodruff; Thiruma V. Arumugam; Ian A. Shiels; Robert C. Reid; David P. Fairlie; Stephen M. Taylor

The complement system is implicated in the pathogenesis of human inflammatory bowel disease, but the specific role of C5a has never been examined. We have compared the efficacy of an orally active human C5a receptor antagonist (AcPhe[Orn-Pro-d-cyclohexylalanine-Trp-Arg]), prednisolone, and infliximab against trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. The drugs were administered either 2 days before or 24 h after TNBS instillation, and rats were then examined after 8 days. Drug-free colitis control rats showed severe disease pathology with significant mortality (39%). Rats pre or posttreated with the C5a antagonist (10 mg/kg/day peroral, 0.3 mg/kg/day s.c.) had reduced mortality and significantly improved macroscopic scores, colon edema, colon myeloperoxidase levels, reduced concentrations of TNF-α levels in the colon and serum, and had greater food intake resulting in greater weight gains than colitis-only rats. Rats pretreated with prednisolone (1 mg/kg/day s.c.) displayed significant improvement in parameters measured, but posttreatment was ineffective. Single dose pretreatment with the TNF-α inhibitor infliximab (3 mg/kg i.v.) also had significant improvements in the parameters measured. Rats pretreated with a combination of the C5a antagonist and prednisolone showed no greater improvements than either drug alone. These findings suggest a central role for complement, particularly C5a, in the pathology of TNBS-induced colitis in rats, indicating a possible therapeutic role for C5a antagonists in inflammatory bowel disease.


The FASEB Journal | 2013

C5L2: a controversial receptor of complement anaphylatoxin, C5a

Rui Li; Liam G. Coulthard; Mike C. L. Wu; Stephen M. Taylor; Trent M. Woodruff

C5a is the paramount proinflammatory mediator of the complement cascade, and has been previously thought to act only through a single, G‐protein‐coupled, C5a receptor (C5aR; also termed CD88). In 2000, a second C5a receptor, C5L2 (previously known as GPR77), was discovered; yet, despite 12 yr of intensive research, its biological, or pathophysiological, function is both enigmatic and controversial. Unlike C5aR, this receptor does not couple to G proteins, and early studies promoted the hypothesis that C5L2 functions as a decoy receptor. However, recent data have provided other evidence for more complicated and conflicting interactions between C5L2 and other inflammatory mediators. C5L2 has been recently demonstrated to physically interact with both C5aR and β‐arrestin to negatively regulate C5aR signaling toward an anti‐inflammatory manner, and to reduce pathology, in several disease models in vivo. In direct contrast, other groups have demonstrated that C5L2 stimulation caused release of HMGB1 both in vitro and in vivo, and enhanced pathology in sepsis models, suggesting a clear proinflammatory signaling role. These astoundingly contradictory data challenge our precepts and complicate the foundational bases for the possible targeting of C5L2 as a therapeutic option in inflammatory disease. C5L2 may be the great masquerader in complement biology; its function dependent on the cell type, species, and disease context. Because of these unusual and unforeseen complexities, we present the current state of knowledge on C5L2 structure, expression and, most controversially, its putative functions.—Li, R., Coulthard, L.G., Wu, M. C. L., Taylor, S. M., Woodruff, T. M. C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J. 27, 855–864 (2013). www.fasebj.org


Journal of Immunology | 2000

A New Small Molecule C5a Receptor Antagonist Inhibits the Reverse-Passive Arthus Reaction and Endotoxic Shock in Rats

Anna J. Strachan; Trent M. Woodruff; Gerald Haaima; David P. Fairlie; Stephen M. Taylor

C5a is implicated as a pathogenic factor in a wide range of immunoinflammatory diseases, including sepsis and immune complex disease. Agents that antagonize the effects of C5a could be useful in these diseases. We have developed some novel C5a antagonists and have determined the acute anti-inflammatory properties of a new small molecule C5a receptor antagonist against C5a- and LPS-induced neutrophil adhesion and cytokine expression, as well as against some hallmarks of the reverse Arthus reaction in rats. We found that a single i.v. dose (1 mg/kg) of this antagonist inhibited both C5a- and LPS-induced neutropenia and elevated levels of circulating TNF-α, as well as polymorphonuclear leukocyte migration, increased TNF-α levels and vascular leakage at the site of immune complex deposition. These results indicate potent anti-inflammatory activities of a new C5a receptor antagonist and provide more evidence for a key early role for C5a in sepsis and the reverse Arthus reaction. The results support a role for antagonists of C5a receptors in the therapeutic intervention of immunoinflammatory disease states such as sepsis and immune complex disease.


The International Journal of Biochemistry & Cell Biology | 2009

Complement component 5a (C5a)

Helga D. Manthey; Trent M. Woodruff; Stephen M. Taylor; Peter N. Monk

The 74 amino acid glycoprotein, complement component 5a (C5a), is a potent pro-inflammatory mediator cleaved enzymatically from its precursor, C5, upon activation of the complement cascade. C5a is quickly metabolised by carboxypeptidases, forming the less potent C5adesArg. Acting via a classical G protein-coupled receptor, CD88, C5a and C5adesArg exert a number of effects essential to the innate immune response, while their actions at the more recently discovered non-G protein-coupled receptor, C5L2 (or GPR77), remain unclear. The widespread expression of C5a receptors throughout the body allows C5a to elicit a broad range of effects. Thus, C5a has been found to be a significant pathogenic driver in a number of immuno-inflammatory diseases, making C5a inhibition an attractive therapeutic strategy.


The FASEB Journal | 2006

Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration

Trent M. Woodruff; James W. Crane; Lavinia M. Proctor; Kathryn M. Buller; Annie B. Shek; Kurt J. De Vos; Sandra Pollitt; Hua M. Williams; Ian A. Shiels; Peter N. Monk; Stephen M. Taylor

The complement system is thought to be involved in the pathogenesis of numerous neurological diseases, although its precise role remains controversial. In this study we used orally active C5a receptor antagonists (PMX53 and PMX205) developed in our laboratories in a rat model of 3‐nitropropionic acid (3‐NP) ‐induced Huntingtons disease. Administration of the C5a antagonists (10 mg/kg/day, oral) either 48 h pre‐ or 48 h post‐toxin significantly reduced body weight loss, anorexia, and behavioral and motor deficits associated with 3‐NP intoxication. Striatal lesion size, apoptosis, neutrophil infiltration, and hemorrhage were also significantly reduced in C5a antagonist‐treated rats. Immunohistochemical analysis demonstrated marked deposition of C3 and C9, and upregulation of C5a receptors on neuronal cells at the time of lesion formation. Inhibition of prostaglandins or TNF‐α with ibuprofen or infliximab had no effect in this model. The C5a antagonists did not affect 3‐NP‐induced cell death when added directly to rat striatal neuronal cultures, indicating a secondary mechanism of action in vivo. Our findings demonstrate for the first time that complement activation in the brain, particularly C5a, is a key event in the pathogenesis of this disease model, and suggest a future role for inhibitors of C5a in the treatment of neurodegenerative diseases.—Woodruff, T. M., Crane, J. W., Proctor, L. M., Buller, K. M., Shek, A. B., de Vos, K., Pollitt, S., Williams, H. M., Shiels, I. A., Monk, P. N., Taylor, S. M. Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J. 20, 1407–1417 (2006)

Collaboration


Dive into the Trent M. Woodruff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Shiels

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

John D. Lee

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thiruma V. Arumugam

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge