Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trent P. Munro is active.

Publication


Featured researches published by Trent P. Munro.


Journal of Biological Chemistry | 1999

Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking.

Trent P. Munro; Rebecca J. Magee; G. J. Kidd; John H. Carson; Elisa Barbarese; Lisa M. Smith; Ross Smith

Cytoplasmic transport and localization of mRNA has been reported for a range of oocytes and somatic cells. The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 response element (A2RE) is a 21-nucleotide segment of the myelin basic protein mRNA that is necessary and sufficient for cytoplasmic transport of this message in oligodendrocytes. The predominant A2RE-binding protein in rat brain has previously been identified as hnRNP A2. Here we report that an 11-nucleotide subsegment of the A2RE (A2RE11) was as effective as the full-length A2RE in binding hnRNP A2 and mediating transport of heterologous RNA in oligodendrocytes. Point mutations of the A2RE11 that eliminated binding to hnRNP A2 also markedly reduced the ability of these oligoribonucleotides to support RNA transport. Oligodendrocytes treated with antisense oligonucleotides directed against the translation start site of hnRNP A2 had reduced levels of this protein and disrupted transport of microinjected myelin basic protein RNA. Several A2RE-like sequences from localized neuronal RNAs also bound hnRNP A2 and promoted RNA transport in oligodendrocytes. These data demonstrate the specificity of A2RE recognition by hnRNP A2, provide direct evidence for the involvement of hnRNP A2 in cytoplasmic RNA transport, and suggest that this protein may interact with a wide variety of localized messages that possess A2RE-like sequences.


Stem Cell Research | 2011

Stem cell integrins: Implications for ex-vivo culture and cellular therapies

Andrew B.J. Prowse; Fenny Chong; Peter P. Gray; Trent P. Munro

Use of stem cells, whether adult or embryonic for clinical applications to treat diseases such as Parkinsons, macular degeneration or Type I diabetes will require a homogenous population of mature, terminally differentiated cells. A current area of intense interest is the development of defined surfaces for stem cell derivation, maintenance, proliferation and subsequent differentiation, which are capable of replicating the complex cellular environment existing in vivo. During development many cellular cues result from integrin signalling induced by the local extracellular matrix. There are 24 known integrin heterodimers comprised of one of 18 α subunits and one of 8 β subunits and these have a diverse range of functions mediating cell-cell adhesion, growth factor receptor responses and intracellular signalling cascades for cell migration, differentiation, survival and proliferation. We discuss here a brief summary of defined conditions for human embryonic stem cell culture together with a description of integrin function and signalling pathways. The importance of integrin expression during development is highlighted as critical for lineage specific cell function and how consideration of the integrin expression profile should be made while differentiating stem cells for use in therapy. In addition this review summarises the known integrin expression profiles for human embryonic stem cells and 3 common adult stem cell types: mesenchymal, haematopoietic and neural. We then outline some of the possible technologies available for investigating cell-extracellular matrix interactions and subsequent integrin mediated cell responses.


PLOS ONE | 2009

Intraclonal protein expression heterogeneity in recombinant CHO cells

Warren Pilbrough; Trent P. Munro; Peter P. Gray

Therapeutic glycoproteins have played a major role in the commercial success of biotechnology in the post-genomic era. But isolating recombinant mammalian cell lines for large-scale production remains costly and time-consuming, due to substantial variation and unpredictable stability of expression amongst transfected cells, requiring extensive clone screening to identify suitable high producers. Streamlining this process is of considerable interest to industry yet the underlying phenomena are still not well understood. Here we examine an antibody-expressing Chinese hamster ovary (CHO) clone at single-cell resolution using flow cytometry and vectors, which couple light and heavy chain transcription to fluorescent markers. Expression variation has traditionally been attributed to genetic heterogeneity arising from random genomic integration of vector DNA. It follows that single cell cloning should yield a homogeneous cell population. We show, in fact, that expression in a clone can be surprisingly heterogeneous (standard deviation 50 to 70% of the mean), approaching the level of variation in mixed transfectant pools, and each antibody chain varies in tandem. Phenotypic variation is fully developed within just 18 days of cloning, yet is not entirely explained by measurement noise, cell size, or the cell cycle. By monitoring the dynamic response of subpopulations and subclones, we show that cells also undergo slow stochastic fluctuations in expression (half-life 2 to 11 generations). Non-genetic diversity may therefore play a greater role in clonal variation than previously thought. This also has unexpected implications for expression stability. Stochastic gene expression noise and selection bias lead to perturbations from steady state at the time of cloning. The resulting transient response as clones reestablish their expression distribution is not ordinarily accounted for but can contribute to declines in median expression over timescales of up to 50 days. Noise minimization may therefore be a novel strategy to reduce apparent expression instability and simplify cell line selection.


Biomaterials | 2010

Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media.

Andrew B.J. Prowse; Michael R. Doran; Justin J. Cooper-White; Fenny Chong; Trent P. Munro; Jane Fitzpatrick; Tung-Liang Chung; David N. Haylock; Peter P. Gray; Ernst J. Wolvetang

Human embryonic stem cells (hESC) are expected to provide revolutionary therapeutic applications and drug discovery technologies. In order for this to be achieved a reproducible, defined animal component free culture system is required for the scale-up production of undifferentiated hESC. In this work we have investigated the applicability of a recombinantly produced domain of human vitronectin as an extracellular matrix alternative to the common standards Geltrex or Matrigel. In addition we have validated an ascorbate free media capable of supporting CD30(low) populations of hESC through a multi-factorial analysis of bFGF and Activin A. The recombinant vitronectin domain combined with the ascorbate free media were capable of supporting 3 cell lines, MEL1, MEL2 and hES3 for 10 or more passages while maintaining hESC pluripotency markers and differentiation capacity. The culture method outlined here provides a platform for future investigation into growth factor and extracellular matrix effects on hESC maintenance prior to bioreactor scale-up.


Molecular and Cellular Biology | 2001

RNA Trafficking Signals in Human Immunodeficiency Virus Type 1

Andrew J. Mouland; Hongbin Xu; Hongyi Cui; Winfried Krueger; Trent P. Munro; Melanie Prasol; Johanne Mercier; David Rekosh; Ross Smith; Elisa Barbarese; Éric A. Cohen; John H. Carson

ABSTRACT Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr andtat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelledgag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently asvpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.


Journal of Cell Science | 2002

RNA trafficking and stabilization elements associate with multiple brain proteins

Mark J. Snee; G. J. Kidd; Trent P. Munro; Ross Smith

Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of β-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the β-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunofluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.


Biomaterials | 2009

Nanoscale presentation of cell adhesive molecules via block copolymer self-assembly.

Peter A. George; Michael R. Doran; Tristan I. Croll; Trent P. Munro; Justin J. Cooper-White

Precise control over the nanoscale presentation of adhesion molecules and other biological factors represents a new frontier for biomaterials science. Recently, the control of integrin spacing and cellular shape has been shown to affect fundamental biological processes, such as differentiation and apoptosis. Here, we present the self-assembly of maleimide functionalised polystyrene-block-poly (ethylene oxide) copolymers as a simple, yet highly precise method for controlling the position of cellular adhesion molecules. By manipulating the phase separation of the functional PS-PEO block copolymer used in this study, via a simple blending technique, we alter the nanoscale (on PEO domains of 8-14 nm in size) presentation of the adhesion peptide, GRGDS, decreasing lateral spacing from 62 nm to 44 nm and increasing the number density from approximately 450 to approximately 900 islands per microm2. The results indicate that the spreading of NIH-3T3 fibroblasts increases as the spacing between domains of RGD binding peptides decreases. Further, the same functional PS-PEO surfaces have been utilised to immobilise, via a zinc chelating peptide sequence, poly-histidine tagged proteins and extracellular matrix (ECM) fragments. This method is seen as an ideal platform for investigations into the role of spatial arrangements of cell adhesion molecules and ECM molecules on cell function and, in particular, control of cell phenotype.


Biomacromolecules | 2013

Tailorable cell culture platforms from enzymatically cross-linked multifunctional poly(ethylene glycol)-based hydrogels

Donna J. Menzies; Andrew R. Cameron; Trent P. Munro; Ernst J. Wolvetang; Lisbeth Grøndahl; Justin J. Cooper-White

As stem-cell-based therapies rapidly advance toward clinical applications, there is a need for cheap, easily manufactured, injectable gels that can be tailored to carry stem cells and impart function to such cells. Herein we describe a process for making hydrogels composed of hydroxyphenyl propionic acid (HPA) conjugated, branched poly(ethylene glycol) (PEG) via an enzyme mediated, oxidative cross-linking method. Functionalization of the branched PEG with HPA at varying degrees of substitution was confirmed via attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and (1)H NMR. The versatility of this hydrogel system was exemplified through variations in the degree of HPA substitution, polymer concentration, and the concentration of cross-linking reagents (horseradish peroxidase and H(2)O(2)), which resulted in a range of mechanical properties and gelation kinetics for these gels. Cross-linking of the PEG-HPA conjugate with a recombinantly produced Fibronectin fragment (Type III domains 7-10) encouraged attachment and spreading of human mesenchymal stem cells (hMSCs) when assessed in both two-dimensional and three-dimensional formats. Interestingly, when encapsulated in both nonfunctionalized and functionalized cross-linked PEG-HPA gels, MSCs showed good viability over all time periods assessed. With tunable gelation kinetics and mechanical properties, these hydrogels provide a flexible in vitro cell culture platform that will likely have significant utility in tissue engineering as an injectable delivery platform for cells to sites of tissue damage.


New Biotechnology | 2014

High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system

Jeff Jia Cheng Hou; Ben S. Hughes; Matthew Smede; Kar Man Leung; Kara Levine; Susan Rigby; Peter P. Gray; Trent P. Munro

Therapeutic recombinant monoclonal antibodies (mAbs) are commonly produced by high-expressing, clonal, mammalian cells. Creation of these clones for manufacturing remains heavily reliant on stringent selection and gene amplification, which in turn can lead to genetic instability, variable expression, product heterogeneity and prolonged development timelines. Inclusion of cis-acting ubiquitous chromatin opening elements (UCOE™) in mammalian expression vectors has been shown to improve productivity and facilitate high-level gene expression irrespective of the chromosomal integration site without lengthy gene amplification protocols. In this study we have used high-throughput robotic clone selection in combination with UCOE™ containing expression vectors to develop a rapid, streamlined approach for early-stage cell line development and isolation of high-expressing clones for mAb production using Chinese hamster ovary (CHO) cells. Our results demonstrate that it is possible to go from transfection to stable clones in only 4 weeks, while achieving specific productivities exceeding 20 pg/cell/day. Furthermore, we have used this approach to quickly screen several process-crucial parameters including IgG subtype, enhancer-promoter combination and UCOE™ length. The use of UCOE™-containing vectors in combination with automated robotic selection provides a rapid method for the selection of stable, high-expressing clones.


PLOS ONE | 2012

Analysis of Mitochondrial Function and Localisation during Human Embryonic Stem Cell Differentiation In Vitro

Andrew B.J. Prowse; Fenny Chong; David A. Elliott; Andrew G. Elefanty; Edouard G. Stanley; Peter P. Gray; Trent P. Munro; Geoffrey W. Osborne

Human embryonic stem cell (hESC) derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction) and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP) are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.

Collaboration


Dive into the Trent P. Munro's collaboration.

Top Co-Authors

Avatar

Peter P. Gray

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross Smith

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Therese Seldon

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ross Barnard

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Yonghua Sheng

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Carson

University of Connecticut Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge