Trent W. Lawton
Auckland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trent W. Lawton.
Journal of Strength and Conditioning Research | 2006
Trent W. Lawton; I John B. Cronin; Rod P. Lindsell
The purpose of this study was to determine the change in weight training repetition power output as a consequence of interrepetition rest intervals. Twenty-six elite junior male basketball and soccer players performed bench presses using a 6 repetition maximum (6RM) load. The power output for each repetition was recorded using a linear encoder sampling each 10 ms (100 Hz). Subjects were assigned to 1 of 3 intervention groups, differentiated by the arrangement of rest intervals within the 6 repetitions: 6 X 1 repetition with 20-second rest periods between each repetition (Singles); 3 X 2 repetitions with 50 seconds between each pair of repetitions (Doubles); or 2 X 3 repetitions with 100 seconds of rest between each 3 repetitions (Triples). A timer was used to ensure that the rest interval and duration to complete all inter-repetition interventions was equated across groups (118 seconds). Significantly (p < 0.05) greater repetition power outputs (25–49%) were observed in the later repetitions (4–6) of the Singles, Doubles, and Triples loading schemes. Significantly greater total power output (21.6–25.1%) was observed for all interrepetition rest interventions when compared to traditional continuous 6RM total power output. No significant between-group differences were found (p = 0.96). We conclude that utilizing interrepetition rest intervals enables greater repetition and total power output in comparison to traditional loading parameters.
Sports Medicine | 2011
Trent W. Lawton; John B. Cronin; Michael R. McGuigan
In the quest to maximize average propulsive stroke impulses over 2000-m racing, testing and training of various strength parameters have been incorporated into the physical conditioning plans of rowers. Thus, the purpose of this review was 2-fold: to identify strength tests that were reliable and valid correlates (predictors) of rowing performance; and, to establish the benefits gained when strength training was integrated into the physical preparation plans of rowers. The reliability of maximal strength and power tests involving leg extension (e.g. leg pressing) and arm pulling (e.g. prone bench pull) was high (intra-class correlations 0.82–0.99), revealing that elite rowers were significantly stronger than their less competitive peers. The greater strength of elite rowers was in part attributed to the correlation between strength and greater lean body mass (r = 0.570.63). Dynamic lower body strength tests that determined the maximal external load for a one-repetition maximum (1RM) leg press (kg), isokinetic leg extension peak force (N) or leg press peak power (W) proved to be moderately to strongly associated with 2000-m ergometer times (r=-0.54 to -0.68; p < 0.05). Repetition tests that assess muscular or strength endurance by quantifying the number of repetitions accrued at a fixed percentage of the strength maximum (e.g. 50–70% 1RM leg press) or set absolute load (e.g. 40 kg prone bench pulls) were less reliable and more time consuming when compared with briefer maximal strength tests. Only leg press repetition tests were correlated with 2000-m ergometer times (e.g. r=-0.67; p < 0.05). However, these tests differentiate training experience and muscle morphology, in that those individuals with greater training experience and/or proportions of slow twitch fibres performed more repetitions. Muscle balance ratios derived from strength data (e.g. hamstring-quadriceps ratio <45% or knee extensor-elbow flexor ratio around 4.2•0.22 to 1) appeared useful in the pathological assessment of low back pain or rib injury history associated with rowing. While strength partially explained variances in 2000-m ergometer performance, concurrent endurance training may be counterproductive to strength development over the shorter term (i.e. <12 weeks). Therefore, prioritization of strength training within the sequence of training units should be considered, particularly over the non-competition phase (e.g. 2–6 sets — 4–12 repetitions, three sessions a week). Maximal strength was sustained when infrequent (e.g. one or two sessions a week) but intense (e.g. 73–79% of maximum) strength training units were scheduled; however, it was unclear whether training adaptations should emphasize maximal strength, endurance or power in order to enhance performance during the competition phase. Additionally, specific on-water strength training practices such as towing ropes had not been reported. Further research should examine the on-water benefits associated with various strength training protocols, in the context of the training phase, weight division, experience and level of rower, if limitations to the reliability and precision of performance data (e.g. 2000-m time or rank) can be controlled. In conclusion, while positive ergometer time-trial benefits of clinical and practical significance were reported with strength training, a lack of statistical significance was noted, primarily due to an absence of quality long-term controlled experimental research designs.
Journal of Strength and Conditioning Research | 2013
Trent W. Lawton; John B. Cronin; Michael R. McGuigan
Abstract Lawton, TW, Cronin, JB, and McGuigan, MR. Strength, power, and muscular endurance exercise and elite rowing ergometer performance. J Strength Cond Res 27(7): 1928–1935, 2013—Knowledge of the relationship between weight room exercises and various rowing performance measures is limited; this information would prove useful for sport-specific assessment of individual needs and exercise prescription. The purpose of this study was to establish strength, power, and muscular endurance exercises for weight room training, which are strong determinants of success in specific performance measures used to assess elite rowers. Nineteen heavyweight elite males determined their repetition maximum (RM) loads for exercises using a Concept 2 DYNO [5, 30, 60 and 120RM leg pressing and seated arm pulling (in Joules)] and free weights [1RM power clean (in kilograms) and 6RM bench pull (in kilograms and watts)]. Rowing performance measures included a 7-stage blood lactate response ergometer test (aerobic condition), time trials (500, 2000, and 5000 m), a peak stroke power test, and a 60-minute distance trial. Pearson correlation moments (r ≥ 0.7) and stepwise multiple linear regression calculations (R2 ≥ 50%) were used to establish strong common variances between weight room exercises and rowing ergometer performance (p ⩽ 0.05). Weight room exercises were strong predictors of 2000-m, 500-m time (in seconds), and peak stroke power performance measures only. Bench pull power (in watts) and 1RM power clean (in kilograms) were the best 2-factor predictors of peak stroke power (R2 = 73%; standard error of the estimates [SEE] = 59.6 W) and 500 m (R2 = 70%; SEE = 1.75 seconds); while 5RM leg pressing (in Joules) and either 6RM bench pull (kg) or 60RM seated arm pulling (in Joules) the best predictors of 2000 m (R2 = 59%; SEE = 6.3 seconds and R2 = 57%; SEE = 6.4 seconds, respectively). Recommended exercises for weight room training include a 1RM power clean, 6RM bench pull, 5RM leg press, and 60RM seated arm pulling.
Journal of Sports Sciences | 2012
Trent W. Lawton; John B. Cronin; Michael R. McGuigan
Abstract The aims of this study were to establish whether anthropometry, muscle strength and endurance accounted for differences between junior and senior elite rowing ergometer performance, and to determine annual development rates for juniors associated with training. Twenty-six junior (8 females, age 18.0±0.3 years and 18 males, age 17.9±0.2 years) and 30 senior (12 females, 23.7±3.0 years and 18 males, 24.0±3.9 years) heavyweight rowers, were assessed anthropometrically, performed a 2000-m ergometer time-trial, and completed various muscular strength and endurance tests. There were no anthropometrical differences between males; however after controlling for body-fat and standing-height, senior females were of greater body-mass (70.5±4.6 kg and 77.2±5.9 kg, P = 0.01) and sitting-height (89.8±2.2 cm and 92.2±6.1 cm, P = 0.04) than juniors. Moderate to very large standardised differences in all strength and endurance tests were observed between juniors and seniors (effect size (ES) range 0.9–1.9). Greater development rates (5.0% to 6.0%) and adjusted 2000-m performance was associated with upper-body strength (males) and endurance (females). In conclusion, after identification of desirable anthropometry, the 2000-m ergometer potential of juniors may be accounted for by upper-body strength and endurance.
Journal of Sports Sciences | 2012
Trent W. Lawton; John B. Cronin; Mike R. McGuigan
Abstract The purpose of this study was to compare changes in aerobic condition, strength, and muscular endurance following 8 weeks of endurance rowing alone or in combination with weight-training. Twenty-two elite rowers were assigned to (1) rowing (n = 10, 250–270 km · week−1) or (2) rowing (n = 12, 190–210 km · week−1) plus four weight-training sessions each week. Pre and post mean and standardized effect-size (ES) differences in aerobic condition (watts at 4 mmol · L−1) and strength (isometric pull, N), prone bench-pull (6-repetition maximum, 6-RM), 5- and 30-repetition leg-press and 60-repetition seated-arm-pull (J, performed on a dynamometer) normalized by body mass and log-transformed were analysed, after adjusting for gender. The standardized differences between groups were trivial for aerobic condition (ES [±90% CI] = 0.15; ±0.28, P = 0.37) and prone bench-pull (ES = 0.27; ±0.33, P = 0.18), although a moderate positive benefit in favour of rowing only was observed for the seated-arm-pull (ES = 0.42; ±0.4, P = 0.08). Only the weight-training group improved isometric pull (12.4 ± 8.9%, P < 0.01), 5-repetition (4.0 ± 5.7%, P < 0.01) and 30-repetition (2.4 ± 5.4%, P < 0.01) leg-press. In conclusion, while gains in aerobic condition and upper-body strength were comparable to extensive endurance rowing, weight-training led to moderately greater lower-body muscular-endurance and strength gains.
Journal of Strength and Conditioning Research | 2017
John B. Cronin; Trent W. Lawton; Nigel K. Harris; Andrew E. Kilding; Daniel Travis McMaster
Abstract Cronin, J, Lawton, T, Harris, N, Kilding, A, and McMaster, DT. A brief review of handgrip strength and sport performance. J Strength Cond Res 31(11): 3187–3217, 2017—Tests of handgrip strength (HGS) and handgrip force (HGF) are commonly used across a number of sporting populations. Measures of HGS and HGF have also been used by practitioners and researchers to evaluate links with sports performance. This article first evaluates the validity and reliability of various handgrip dynamometers (HGD) and HGF sensors, providing recommendations for procedures to ensure that precise and reliable data are collected as part of an athletes testing battery. Second, the differences in HGS between elite and subelite athletes and the relationships between HGS, HGF, and sports performance are discussed.
Journal of Sports Sciences | 2014
Trent W. Lawton; John B. Cronin; Michael R. McGuigan
Abstract The purpose of this project was to evaluate the utility of low- and high-repetition maximum (RM) strength tests used to assess rowers. Twenty elite heavyweight males (age 23.7 ± 4.0 years) performed four tests (5 RM, 30 RM, 60 RM and 120 RM) using leg press and seated arm pulling exercise on a dynamometer. Each test was repeated on two further occasions; 3 and 7 days from the initial trial. Per cent typical error (within-participant variation) and intraclass correlation coefficients (ICCs) were calculated using log-transformed repeated-measures data. High-repetition tests (30 RM, 60 RM and 120 RM), involving seated arm pulling exercise are not recommended to be included in an assessment battery, as they had unsatisfactory measurement precision (per cent typical error > 5% or ICC < 0.9). Conversely, low-repetition tests (5 RM) involving leg press and seated arm pulling exercises could be used to assess elite rowers (per cent typical error ≤ 5% and ICC ≥ 0.9); however, only 5 RM leg pressing met criteria (per cent typical error = 2.7%, ICC = 0.98) for research involving small samples (n = 20). In summary, low-repetition 5 RM strength testing offers greater utility as assessments of rowers, as they can be used to measure upper- and lower-body strength; however, only the leg press exercise is recommended for research involving small squads of elite rowers.
Journal of Strength and Conditioning Research | 2013
Trent W. Lawton; John B. Cronin; Michael R. McGuigan
Abstract Lawton, TW, Cronin JB, and McGuigan, MR. Does on-water resisted rowing increase or maintain lower-body strength? J Strength Cond Res 27(7): 1958–1963, 2013—Over the past 30 years, endurance volumes have increased by >20% among the rowing elite; therefore, informed decisions about the value of weight training over other possible activities in periodized training plans for rowing need to be made. The purpose of this study was to quantify the changes in lower-body strength development after two 14-week phases of intensive resisted on-water rowing, either incorporating weight training or rowing alone. Ten elite women performed 2 resisted rowing (“towing ropes,” e.g., 8 × 3 minutes) plus 6 endurance (e.g., 16–28 km at 70–80% maximum heart rate) and 2 rate-regulated races (e.g., 8,000 m at 24 strokes per minute) on-water each week. After a 4-week washout phase, the 14-week phase was repeated with the addition of 2 weight-training sessions (e.g., 3–4 sets × 6–15 reps). Percent (±SD) and standardized differences in effects (effect size [ES] ± 90% confidence limit) for 5-repetition leg pressing and isometric pulling strength were calculated from data ratio scaled for body mass, log transformed and adjusted for pretest scores. Resisted rowing alone did not increase leg pressing (−1.0 ± 5.3%, p = 0.51) or isometric pulling (5.3 ± 13.4%, p = 0.28) strength. In contrast, after weight training, a moderately greater increase in leg pressing strength was observed (ES = 0.72 ± 0.49, p = 0.03), although differences in isometric pulling strength were unclear (ES = 0.56 ± 1.69, p = 0.52). In conclusion, intensive on-water training including resisted rowing maintained but did not increase lower-body strength. Elite rowers or coaches might consider the incorporation of high-intensity nonfatiguing weight training concurrent to endurance exercise if increases in lower-body strength without changes in body mass are desired.
Strength and Conditioning Journal | 2007
John B. Cronin; Teresa Ogden; Trent W. Lawton; Matt Brughelli
PubliCE Standard | 2008
John B. Cronin; Teresa Ogden; Trent W. Lawton; Matt Brughelli