Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trevor Bedford is active.

Publication


Featured researches published by Trevor Bedford.


Molecular Biology and Evolution | 2012

Improving the Accuracy of Demographic and Molecular Clock Model Comparison While Accommodating Phylogenetic Uncertainty

Guy Baele; Philippe Lemey; Trevor Bedford; Andrew Rambaut; Marc A. Suchard; Alexander V. Alekseyenko

Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaikes information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses.


Science | 2014

The early spread and epidemic ignition of HIV-1 in human populations

Nuno Rodrigues Faria; Andrew Rambaut; Marc A. Suchard; Guy Baele; Trevor Bedford; Melissa J. Ward; Andrew J. Tatem; Joao Sousa; Nimalan Arinaminpathy; Jacques Pépin; David Posada; Martine Peeters; Oliver G. Pybus; Philippe Lemey

The hidden history of the HIV pandemic Rail and river transport in 1960s Congo, combined with the sexual revolution and changes in health care practices, primed the HIV pandemic. Faria et al. unpick the circumstances surrounding the ascendancy of HIV from its origins before 1920 in chimpanzee hunters in the Cameroon to amplification in Kinshasa. Around 1960, rail links promoted the spread of the virus to mining areas in southeastern Congo and beyond. Ultimately, HIV crossed the Atlantic in Haitian teachers returning home. From those early events, a pandemic was born. Science, this issue p. 56 The early history of HIV centered on Kinshasa before accelerating in 1960 as a result of seismic social change after independence. Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations.


Nature | 2016

Persistent HIV-1 replication maintains the tissue reservoir during therapy

Ramon Lorenzo-Redondo; Helen R. Fryer; Trevor Bedford; Eun Young Kim; John Archer; Sergei L. Kosakovsky Pond; Yoon-Seok Chung; Sudhir Penugonda; Jeffrey G. Chipman; Courtney V. Fletcher; Timothy W. Schacker; Michael H. Malim; Andrew Rambaut; Ashley T. Haase; Angela R. McLean; Steven M. Wolinsky

Lymphoid tissue is a key reservoir established by HIV-1 during acute infection. It is a site associated with viral production, storage of viral particles in immune complexes, and viral persistence. Although combinations of antiretroviral drugs usually suppress viral replication and reduce viral RNA to undetectable levels in blood, it is unclear whether treatment fully suppresses viral replication in lymphoid tissue reservoirs. Here we show that virus evolution and trafficking between tissue compartments continues in patients with undetectable levels of virus in their bloodstream. We present a spatial and dynamic model of persistent viral replication and spread that indicates why the development of drug resistance is not a foregone conclusion under conditions in which drug concentrations are insufficient to completely block virus replication. These data provide new insights into the evolutionary and infection dynamics of the virus population within the host, revealing that HIV-1 can continue to replicate and replenish the viral reservoir despite potent antiretroviral therapy.


Cell | 2015

Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone

Daniel J. Park; Gytis Dudas; Shirlee Wohl; Augustine Goba; Shannon Whitmer; Kristian G. Andersen; Rachel Sealfon; Jason T. Ladner; Jeffrey R. Kugelman; Christian B. Matranga; Sarah M. Winnicki; James Qu; Stephen K. Gire; Adrianne Gladden-Young; Simbirie Jalloh; Dolo Nosamiefan; Nathan L. Yozwiak; Lina M. Moses; Pan-Pan Jiang; Aaron E. Lin; Stephen F. Schaffner; Brian Bird; Jonathan S. Towner; Mambu Mamoh; Michael Gbakie; Lansana Kanneh; David Kargbo; James L.B. Massally; Fatima K. Kamara; Edwin Konuwa

Summary The 2013–2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


PLOS Pathogens | 2014

Unifying Viral Genetics and Human Transportation Data to Predict the Global Transmission Dynamics of Human Influenza H3N2

Philippe Lemey; Andrew Rambaut; Trevor Bedford; Nuno Rodrigues Faria; Filip Bielejec; Guy Baele; Colin A. Russell; Derek J. Smith; Oliver G. Pybus; Dirk Brockmann; Marc A. Suchard

Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance through phylogeographic reconstructions and for improving predictive models of disease control.


Nature | 2015

Global circulation patterns of seasonal influenza viruses vary with antigenic drift

Trevor Bedford; Steven Riley; Ian G. Barr; Shobha Broor; Mandeep S. Chadha; Nancy J. Cox; Rodney S. Daniels; C Palani Gunasekaran; Aeron C. Hurt; Anne Kelso; Alexander Klimov; Nicola S. Lewis; Xiyan Li; John W. McCauley; Takato Odagiri; Varsha Potdar; Andrew Rambaut; Yuelong Shu; Eugene Skepner; Derek J. Smith; Marc A. Suchard; Masato Tashiro; Dayan Wang; Xiyan Xu; Philippe Lemey; Colin A. Russell

Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.


eLife | 2014

Integrating influenza antigenic dynamics with molecular evolution

Trevor Bedford; Marc A. Suchard; Philippe Lemey; Gytis Dudas; Vicky Gregory; Alan Hay; John W. McCauley; Colin A. Russell; Derek J. Smith; Andrew Rambaut

Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001


PLOS Pathogens | 2010

Global migration dynamics underlie evolution and persistence of human influenza A (H3N2).

Trevor Bedford; Sarah Cobey; Peter Beerli; Mercedes Pascual

The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenzas evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions.


The New England Journal of Medicine | 2015

Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine

Daniel E. Neafsey; Michal Juraska; Trevor Bedford; David Benkeser; Clarissa Valim; Allison D. Griggs; Marc Lievens; Salim Abdulla; Samuel Adjei; Tsiri Agbenyega; Selidji Todagbe Agnandji; Pedro Aide; Scott Anderson; Daniel Ansong; John J. Aponte; Kwaku Poku Asante; Philip Bejon; Ashley J. Birkett; Myriam Bruls; Kristen M. Connolly; Umberto D'Alessandro; Carlota Dobaño; Samwel Gesase; Brian Greenwood; Jonna Grimsby; Halidou Tinto; Mary J. Hamel; Irving Hoffman; Portia Kamthunzi; Simon Kariuki

BACKGROUND The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).


Nature | 2017

Establishment and cryptic transmission of Zika virus in Brazil and the Americas

Nuno Rodrigues Faria; Josh Quick; Julien Thézé; J. G. de Jesus; Marta Giovanetti; Moritz U. G. Kraemer; Sarah C. Hill; Allison Black; A. C. da Costa; Luciano Franco; Sandro Patroca da Silva; Chieh-Hsi Wu; Jayna Raghwani; Simon Cauchemez; L. du Plessis; M. P. Verotti; W. K. de Oliveira; E. H. Carmo; Giovanini Evelim Coelho; A. C. F. S. Santelli; L. C. Vinhal; C. M. Henriques; Jared T. Simpson; Matthew Loose; Kristian G. Andersen; Nathan D. Grubaugh; Sneha Somasekar; Charles Y. Chiu; José Esteban Muñoz-Medina; César González-Bonilla

Transmission of Zika virus (ZIKV) in the Americas was first confirmed in May 2015 in northeast Brazil. Brazil has had the highest number of reported ZIKV cases worldwide (more than 200,000 by 24 December 2016) and the most cases associated with microcephaly and other birth defects (2,366 confirmed by 31 December 2016). Since the initial detection of ZIKV in Brazil, more than 45 countries in the Americas have reported local ZIKV transmission, with 24 of these reporting severe ZIKV-associated disease. However, the origin and epidemic history of ZIKV in Brazil and the Americas remain poorly understood, despite the value of this information for interpreting observed trends in reported microcephaly. Here we address this issue by generating 54 complete or partial ZIKV genomes, mostly from Brazil, and reporting data generated by a mobile genomics laboratory that travelled across northeast Brazil in 2016. One sequence represents the earliest confirmed ZIKV infection in Brazil. Analyses of viral genomes with ecological and epidemiological data yield an estimate that ZIKV was present in northeast Brazil by February 2014 and is likely to have disseminated from there, nationally and internationally, before the first detection of ZIKV in the Americas. Estimated dates for the international spread of ZIKV from Brazil indicate the duration of pre-detection cryptic transmission in recipient regions. The role of northeast Brazil in the establishment of ZIKV in the Americas is further supported by geographic analysis of ZIKV transmission potential and by estimates of the basic reproduction number of the virus.

Collaboration


Dive into the Trevor Bedford's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Lemey

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Gytis Dudas

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Baele

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge