Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trevor C. McMorris is active.

Publication


Featured researches published by Trevor C. McMorris.


Cell | 1995

Identification of a nuclear receptor that is activated by farnesol metabolites.

Barry M. Forman; Elizabeth Goode; Jasmine Chen; Anthony E. Oro; David J. Bradley; Thomas Perlmann; Daniel J. Noonan; Leo T. Burka; Trevor C. McMorris; William W. Lamph; Ronald M. Evans; Cary Weinberger

Nuclear hormone receptors comprise a superfamily of ligand-modulated transcription factors that mediate the transcriptional activities of steroids, retinoids, and thyroid hormones. A growing number of related proteins have been identified that possess the structural features of hormone receptors, but that lack known ligands. Known as orphan receptors, these proteins represent targets for novel signaling molecules. We have isolated a mammalian orphan receptor that forms a heterodimeric complex with the retinoid X receptor. A screen of candidate ligands identified farnesol and related metabolites as effective activators of this complex. Farnesol metabolites are generated intracellularly and are required for the synthesis of cholesterol, bile acids, steroids, retinoids, and farnesylated proteins. Intermediary metabolites have been recognized as transcriptional regulators in bacteria and yeast. Our results now suggest that metabolite-controlled intracellular signaling systems are utilized by higher organisms.


Science | 1996

A Role for Brassinosteroids in Light-Dependent Development of Arabidopsis

Jianming Li; Punita Nagpal; Veronique Vitart; Trevor C. McMorris; Joanne Chory

Although steroid hormones are important for animal development, the physiological role of plant steroids is unknown. The Arabidopsis DET2 gene encodes a protein that shares significant sequence identity with mammalian steroid 5α-reductases. A mutation of glutamate 204, which is absolutely required for the activity of human steroid reductase, abolishes the in vivo activity of DET2 and leads to defects in light-regulated development that can be ameliorated by application of a plant steroid, brassinolide. Thus, DET2 may encode a reductase in the brassinolide biosynthetic pathway, and brassinosteroids may constitute a distinct class of phytohormones with an important role in light-regulated development of higher plants.


Plant Physiology | 1996

A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development

Steven D. Clouse; Mark Langford; Trevor C. McMorris

Brassinosteroids are widely distributed plant compounds that modulate cell elongation and division, but little is known about the mechanism of action of these plant growth regulators. To investigate brassinosteroids as signals influencing plant growth and development, we identified a brassinosteroid-insensitive mutant in Arabidopsis thaliana (L.) Henyh. ecotype Columbia. The mutant, termed bri1, did not respond to brassinosteroids in hypocotyl elongation and primary root inhibition assays, but it did retain sensitivity to auxins, cytokinins, ethylene, abscisic acid, and gibberellins. The bri1 mutant showed multiple deficiencies in developmental pathways that could not be rescued by brassinosteroid treatment, including a severely dwarfed stature; dark green, thickened leaves; male sterility; reduced apical dominance; and de-etiolation of darkgrown seedlings. Genetic analysis suggests that the Bri1 phenotype is caused by a recessive mutation in a single gene with pleiotropic effects that maps 1.6 centimorgans from the cleaved, amplified, polymorphic sequence marker DHS1 on the bottom of chromosome IV. The multiple and dramatic effects of mutation of the BRI1 locus on development suggests that the BRI1 gene may play a critical role in brassinosteroid perception or signal transduction.


Plant Physiology | 1994

Investigation of Gene Expression, Growth Kinetics, and Wall Extensibility during Brassinosteroid-Regulated Stem Elongation

Daniel M. Zurek; D. L. Rayle; Trevor C. McMorris; Steven D. Clouse

Brassinosteroids promote stem elongation in a variety of plants but little is known about the mechanism of action of these plant growth regulators. We investigated a number of physiological and molecular parameters associated with brassinosteroid-enhanced elongation. Continuous growth recordings of soybean (Glycine max L. cv Williams 82) epicotyls showed that there was a 45-min lag before 0.1 [mu]M brassinolide (BR) exerted a detectable effect on elongation. BR caused a marked increase in Instron-measured plastic extensibility, suggesting that BR may promote elongation in part by altering mechanical properties of the cell wall (wall loosening). Structure-function studies suggested that the dimensions of the brassinosteroid side chain were critical for promotion of elongation and expression of BRU1, a gene regulated specifically by active brassinosteroids. Auxin-BR interactions were examined by using small auxin up RNA (SAUR) gene probes and the auxin-insensitive diageotropica (dgt) mutant of tomato (Lycopersicon esculentum Mill.). We have shown that in wild-type tomato, which elongates in response to exogenous auxin, a transcript of identical size to the soybean SAUR 15A is strongly induced within 1 h by 50 [mu]M 2,4-dichlorophenoxyacetic acid or indoleacetic acid, whereas in the dgt mutant, which does not elongate in response to auxin, no transcript is expressed. Furthermore, BR promotes equal elongation of hypocotyls in both wild-type and dgt tomatoes but does not rapidly induce the SAUR 15A homolog in either genotype. BR does not cause rapid induction of SAUR 6B in elongating soybean epicotyls but does lead to increased expression after 18 h. This late BR activation of SAUR 6B is controlled, at least in part, at the transcriptional level and is not accompanied by an increase of free indoleacetic acid in the tissue. We conclude that although both BR and auxin affect wall relaxation processes, BR-promoted elongation in soybean and tomato stems acts via a mechanism that most likely does not proceed through the auxin signal transduction pathway.


DNA Repair | 2002

Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways

Nicolaas G. J. Jaspers; Anja Raams; Michael J. Kelner; Jessica M.Y. Ng; Yukiko M. Yamashita; Shiunichi Takeda; Trevor C. McMorris; Jan H.J. Hoeijmakers

Illudin S is a natural sesquiterpene drug with strong anti-tumour activity. Inside cells, unstable active metabolites of illudin cause the formation of as yet poorly characterised DNA lesions. In order to identify factors involved in their repair, we have performed a detailed genetic survey of repair-defective mutants for responses to the drug. We show that 90% of illudins lethal effects in human fibroblasts can be prevented by an active nucleotide excision repair (NER) system. Core NER enzymes XPA, XPF, XPG, and TFIIH are essential for recovery. However, the presence of global NER initiators XPC, HR23A/HR23B and XPE is not required, whereas survival, repair and recovery from transcription inhibition critically depend on CSA, CSB and UVS, the factors specific for transcription-coupled NER. Base excision repair and non-homologous end-joining of DNA breaks do not play a major role in the processing of illudin lesions. However, active RAD18 is required for optimal cell survival, indicating that the lesions also block replication forks, eliciting post-replication-repair-like responses. However, the translesion-polymerase DNA pol eta is not involved. We conclude that illudin-induced lesions are exceptional in that they appear to be ignored by all of the known global repair systems, and can only be repaired when trapped in stalled replication or transcription complexes. We show that the semisynthetic illudin derivative hydroxymethylacylfulvene (HMAF, Irofulven), currently under clinical trial for anti-tumour therapy, acts via the same mechanism.


Journal of Plant Growth Regulation | 1993

Physiological and molecular effects of brassinosteroids on Arabidopsis thaliana

Steven D. Clouse; Allen F. Hall; Mark Langford; Trevor C. McMorris; Michael E. Baker

We examined the effects of brassinosteroids on Arabidopsis thaliana (L.) Henyh. ecotype Columbia in order to develop a model system for studying gene regulation by plant steroids. Submicromolar concentrations of two brassinosteroids, brassinolide and 24-epibrassinolide, stimulated elongation of Arabidopsis peduncles and inhibited root elongation, respectively. Furthermore, brassinolide altered the abundance of specific in vitro translatable mRNAs from peduncles and whole plants of Arabidopsis. Root elongation in the auxin-insensitive Arabidopsis mutant axr1 was inhibited by 24-epibrassinolide but not by 2,4-D, indicating an independent mode of action for these growth regulators in this physiological response.


Investigational New Drugs | 1996

Efficacy of HMAF (MGI-114) in the MV522 metastatic lung carcinoma xenograft model nonresponsive to traditional anticancer agents

Michael J. Kelner; Trevor C. McMorris; Leita A. Estes; Wen Wnag; Kyra M. Samson; Raymond Taetle

SummaryIlludin analogs are cytotoxic to a variety of multidrug resistant cell lines, and display an unusual toxicity towards DNA helicase-deficient cell lines. Earlier illudin analogs demonstrated efficacy in several xenograft models, including a metastatic MV522 lung cancer model, resistant to conventional anticancer agents. These illudin analogs prolonged life span as compared to conventional agents, but did not induce complete remission of primary tumors. In vitro screening studies identified a semisynthetic derivative, hydroxymethylacylfulvene (HMAF, MGI-114), with increased selective cytotoxicity towards carcinoma cells. The HMAF analog was markedly effective in the experimental MV522 metastasizing lung carcinoma xenograft system, a model refractory to treatment with existing anticancer agents. Treatment with paclitaxel, doxorubicin, or cisplatin failed to significantly inhibit primary tumor growth or prolong life span of MV522 tumor-bearing animals. Treatment with mitomycin C at the LD20 increased life span in surviving animals up to 61% (p = 0.04). Treatment with HMAF induced primary tumor regression in all animals and increased life span greater than 150% (p<0.001). Thus, administration of HMAF inhibited development of lung metastasis in a model refractory to treatment with conventional anticancer agents. These results support further evaluation of HMAF as a therapeutic agent for treatment of solid tumors such as adenocarcinoma of the lung.


Cellular and Molecular Life Sciences | 1996

Acylfulvenes, a new class of potent antitumor agents

Trevor C. McMorris; Michael J. Kelner; W. Wang; M. A. Diaz; Leita A. Estes; Raymond Taetle

Acylfulvene, derived from the sesquiterpene illudin S by treatment with acid (reverse Prins reaction), is far less reactive to thiols than illudin S. However, it is reduced readily to an aromatic product, in the same way as illudin S. This may explain its greatly improved therapeutic index compared to that of the parent compound.


Biochemical Pharmacology | 1994

Characterization of illudin S sensitivity in DNA repair-deficient Chinese hamster cells. Unusually high sensitivity of ERCC2 and ERCC3 DNA helicase-deficient mutants in comparison to other chemotherapeutic agents.

Michael J. Kelner; Trevor C. McMorris; Leita A. Estes; Mary Rutherford; Mark A. Montoya; Jill Goldstein; Kyra M. Samson; Robin Starr; Raymond Taetle

Illudins, novel natural products with a structure unrelated to any other known chemical, display potent in vitro and in vivo anti-cancer activity against even multi-drug resistant tumors, and are metabolically activated to an unstable intermediate that binds to DNA. The DNA damage produced by illudins, however, appears to differ from that of other known DNA damaging toxins. The sensitivity pattern of the various UV-sensitive cell lines differs from previously studied DNA cross-linking agents. Normally, the ERCC1- (excision repair cross complementing) and ERCC4-deficient cell lines are most sensitive to DNA cross-linking agents, with ERCC2-, ERCC3- and ERCC5-deficient cell lines having minimal sensitivity. With illudins the pattern is reversed, with ERCC2 and ERCC3 being the most sensitive. The sensitivity to illudins in complementation groups 1 through 3 is due to a deficiency of the ERCC1-3 gene products, as cellular drug accumulation studies revealed no differences in transport capacity or total drug accumulation. Also, a transgenic cell line in which ERCC2 activity was expressed through an expression vector regained its relative resistance to the illudins. The EM9 cell line, which displays sensitivity to monoadduct producing chemicals, was not sensitive. Thus, excision repair is involved in repair of illudin-induced damage and, unlike other anti-cancer agents, the involvement of ERCC2 and ERCC3 helicases is critical for repair to occur. The requirement for ERCC2 and ERCC3, combined with the finding that ERCC1 but not ERCC2 is upregulated in drug-resistant tumors, may explain the efficacy of illudins against drug-resistant tumors. The inhibition of DNA synthesis in cells within minutes after exposure to illudins at nanomolar concentrations may be related to the finding that the ERCC3 gene product is actually the p89 helicase component of the BTF2 (TFII) basic transcription factor and the high sensitivity of ERCC3-deficient cells to illudins.


Bioorganic & Medicinal Chemistry | 1999

Discovery and development of sesquiterpenoid derived hydroxymethylacylfulvene : A new anticancer drug

Trevor C. McMorris

Hydroxymethylacylfulvene (HMAF, MGI 114) is derived from the sesquiterpene illudin S by treatment with dilute sulfuric acid and excess paraformaldehyde. It is less cytotoxic than illudin S but exhibits much greater selectivity in toxicity to malignant cells compared to normal cells. HMAF is believed to undergo bioreductive activation in vivo. It is now being tested in human clinical phase II trials against solid tumors.

Collaboration


Dive into the Trevor C. McMorris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leita A. Estes

University of California

View shared research outputs
Top Co-Authors

Avatar

Raymond Taetle

University of California

View shared research outputs
Top Co-Authors

Avatar

Jian Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

Gary R. Weihe

University of California

View shared research outputs
Top Co-Authors

Avatar

Kyra M. Samson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge