Trevor Cohn
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trevor Cohn.
Journal of Artificial Intelligence Research | 2009
Trevor Cohn; Mirella Lapata
This paper presents a tree-to-tree transduction method for sentence compression. Our model is based on synchronous tree substitution grammar, a formalism that allows local distortion of the tree topology and can thus naturally capture structural mismatches. We describe an algorithm for decoding in this framework and show how the model can be trained discriminatively within a large margin framework. Experimental results on sentence compression bring significant improvements over a state-of-the-art model.
meeting of the association for computational linguistics | 2006
Phil Blunsom; Trevor Cohn
In this paper we present a novel approach for inducing word alignments from sentence aligned data. We use a Conditional Random Field (CRF), a discriminative model, which is estimated on a small supervised training set. The CRF is conditioned on both the source and target texts, and thus allows for the use of arbitrary and overlapping features over these data. Moreover, the CRF has efficient training and decoding processes which both find globally optimal solutions.We apply this alignment model to both French-English and Romanian-English language pairs. We show how a large number of highly predictive features can be easily incorporated into the CRF, and demonstrate that even with only a few hundred word-aligned training sentences, our model improves over the current state-of-the-art with alignment error rates of 5.29 and 25.8 for the two tasks respectively.
international joint conference on natural language processing | 2009
Phil Blunsom; Trevor Cohn; Chris Dyer; Miles Osborne
We present a phrasal synchronous grammar model of translational equivalence. Unlike previous approaches, we do not resort to heuristics or constraints from a word-alignment model, but instead directly induce a synchronous grammar from parallel sentence-aligned corpora. We use a hierarchical Bayesian prior to bias towards compact grammars with small translation units. Inference is performed using a novel Gibbs sampler over synchronous derivations. This sampler side-steps the intractability issues of previous models which required inference over derivation forests. Instead each sampling iteration is highly efficient, allowing the model to be applied to larger translation corpora than previous approaches.
international conference on computational linguistics | 2008
Trevor Cohn; Mirella Lapata
In this paper we generalise the sentence compression task. Rather than simply shorten a sentence by deleting words or constituents, as in previous work, we rewrite it using additional operations such as substitution, reordering, and insertion. We present a new corpus that is suited to our task and a discriminative tree-to-tree transduction model that can naturally account for structural and lexical mismatches. The model incorporates a novel grammar extraction method, uses a language model for coherent output, and can be easily tuned to a wide range of compression specific loss functions.
conference on computational natural language learning | 2005
Trevor Cohn; Philip Blunsom
In this paper we apply conditional random fields (CRFs) to the semantic role labelling task. We define a random field over the structure of each sentences syntactic parse tree. For each node of the tree, the model must predict a semantic role label, which is interpreted as the labelling for the corresponding syntactic constituent. We show how modelling the task as a tree labelling problem allows for the use of efficient CRF inference algorithms, while also increasing generalisation performance when compared to the equivalent maximum entropy classifier. We have participated in the CoNLL-2005 shared task closed challenge with full syntactic information.
Computational Linguistics | 2008
Trevor Cohn; Chris Callison-Burch; Mirella Lapata
Automatic paraphrasing is an important component in many natural language processing tasks. In this article we present a new parallel corpus with paraphrase annotations. We adopt a definition of paraphrase based on word alignments and show that it yields high inter-annotator agreement. As Kappa is suited to nominal data, we employ an alternative agreement statistic which is appropriate for structured alignment tasks. We discuss how the corpus can be usefully employed in evaluating paraphrase systems automatically (e.g., by measuring precision, recall, and F1) and also in developing linguistically rich paraphrase models based on syntactic structure.
north american chapter of the association for computational linguistics | 2009
Trevor Cohn; Sharon Goldwater; Phil Blunsom
Tree substitution grammars (TSGs) are a compelling alternative to context-free grammars for modelling syntax. However, many popular techniques for estimating weighted TSGs (under the moniker of Data Oriented Parsing) suffer from the problems of inconsistency and over-fitting. We present a theoretically principled model which solves these problems using a Bayesian non-parametric formulation. Our model learns compact and simple grammars, uncovering latent linguistic structures (e.g., verb subcategorisation), and in doing so far out-performs a standard PCFG.
north american chapter of the association for computational linguistics | 2016
Trevor Cohn; Cong Duy Vu Hoang; Ekaterina Vymolova; Kaisheng Yao; Chris Dyer; Gholamreza Haffari
Neural encoder-decoder models of machine translation have achieved impressive results, rivalling traditional translation models. However their modelling formulation is overly simplistic, and omits several key inductive biases built into traditional models. In this paper we extend the attentional neural translation model to include structural biases from word based alignment models, including positional bias, Markov conditioning, fertility and agreement over translation directions. We show improvements over a baseline attentional model and standard phrase-based model over several language pairs, evaluating on difficult languages in a low resource setting.
international conference on computational linguistics | 2008
Chris Callison-Burch; Trevor Cohn; Mirella Lapata
We present ParaMetric, an automatic evaluation metric for data-driven approaches to paraphrasing. ParaMetric provides an objective measure of quality using a collection of multiple translations whose paraphrases have been manually annotated. ParaMetric calculates precision and recall scores by comparing the paraphrases discovered by automatic paraphrasing techniques against gold standard alignments of words and phrases within equivalent sentences. We report scores for several established paraphrasing techniques.
meeting of the association for computational linguistics | 2016
Ekaterina Vylomova; Laura Rimell; Trevor Cohn; Timothy Baldwin
Recent work on word embeddings has shown that simple vector subtraction over pre-trained embeddings is surprisingly effective at capturing different lexical relations, despite lacking explicit supervision. Prior work has evaluated this intriguing result using a word analogy prediction formulation and hand-selected relations, but the generality of the finding over a broader range of lexical relation types and different learning settings has not been evaluated. In this paper, we carry out such an evaluation in two learning settings: (1) spectral clustering to induce word relations, and (2) supervised learning to classify vector differences into relation types. We find that word embeddings capture a surprising amount of information, and that, under suitable supervised training, vector subtraction generalises well to a broad range of relations, including over unseen lexical items.