Trevor J. Del Castillo
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trevor J. Del Castillo.
Journal of the American Chemical Society | 2016
Trevor J. Del Castillo; Niklas B. Thompson; Jonas C. Peters
The mechanisms of the few known molecular nitrogen-fixing systems, including nitrogenase enzymes, are of much interest but are not fully understood. We recently reported that Fe-N2 complexes of tetradentate P3(E) ligands (E = B, C) generate catalytic yields of NH3 under an atmosphere of N2 with acid and reductant at low temperatures. Here we show that these Fe catalysts are unexpectedly robust and retain activity after multiple reloadings. Nearly an order of magnitude improvement in yield of NH3 for each Fe catalyst has been realized (up to 64 equiv of NH3 produced per Fe for P3(B) and up to 47 equiv for P3(C)) by increasing acid/reductant loading with highly purified acid. Cyclic voltammetry shows the apparent onset of catalysis at the P3(B)Fe-N2/P3(B)Fe-N2(-) couple and controlled-potential electrolysis of P3(B)Fe(+) at -45 °C demonstrates that electrolytic N2 reduction to NH3 is feasible. Kinetic studies reveal first-order rate dependence on Fe catalyst concentration (P3(B)), consistent with a single-site catalyst model. An isostructural system (P3(Si)) is shown to be appreciably more selective for hydrogen evolution. In situ freeze-quench Mössbauer spectroscopy during turnover reveals an iron-borohydrido-hydride complex as a likely resting state of the P3(B)Fe catalyst system. We postulate that hydrogen-evolving reaction activity may prevent iron hydride formation from poisoning the P3(B)Fe system. This idea may be important to consider in the design of synthetic nitrogenases and may also have broader significance given that intermediate metal hydrides and hydrogen evolution may play a key role in biological nitrogen fixation.
Journal of the American Chemical Society | 2011
Matthew E. O’Reilly; Trevor J. Del Castillo; Joseph M. Falkowski; Mekhala Pati; Marie C. Correia; Khalil A. Abboud; N. S. Dalal; David E. Richardson; Adam S. Veige
Synthetic and kinetic experiments designed to probe the mechanism of O(2) activation by the trianionic pincer chromium(III) complex [(t)BuOCO]Cr(III)(THF)(3) (1) (where (t)BuOCO = [2,6-((t)BuC(6)H(3)O)(2)C(6)H(3)](3-), THF = tetrahydrofuran) are described. Whereas analogous porphyrin and corrole oxidation catalysts can become inactive toward O(2) activation upon dimerization (forming a μ-oxo species) or product inhibition, complex 1 becomes more active toward O(2) activation when dimerized. The product from O(2) activation, [(t)BuOCO]Cr(V)(O)(THF) (2), catalyzes the oxidation of 1 via formation of the μ-O dimer {[(t)BuOCO]Cr(IV)(THF)}(2)(μ-O) (3). Complex 3 exists in equilibrium with 1 and 2 and thus could not be isolated in pure form. However, single crystals of 3 and 1 co-deposit, and the molecular stucture of 3 was determined using single-crystal X-ray crystallography methods. Variable (9.5, 35, and 240 GHz) frequency electron paramagnetic resonance spectroscopy supports the assignment of complex 3 as a Cr(IV)-O-Cr(IV) dimer, with a high (S = 2) spin ground state, based on detailed computer simulations. Complex 3 is the first conclusively assigned example of a complex containing a Cr(IV) dimer; its spin Hamiltonian parameters are g(iso) = 1.976, D = 2400 G, and E = 750 G. The reaction of 1 with O(2) was monitored by UV-visible spectrophotometry, and the kinetic orders of the reagents were determined. The reaction does not exhibit first-order behavior with respect to the concentrations of complex 1 and O(2). Altering the THF concentration reveals an inverse order behavior in THF. A proposed autocatalytic mechanism, with 3 as the key intermediate, was employed in numerical simulations of concentration versus time decay plots, and the individual rate constants were calculated. The simulations agree well with the experimental observations. The acceleration is not unique to 2; for example, the presence of OPPh(3) accelerates O(2) activation by forming the five-coordinate complex trans-[(t)BuOCO]Cr(III)(OPPh(3))(2) (4).
ACS central science | 2017
Matthew J. Chalkley; Trevor J. Del Castillo; Benjamin D. Matson; Joseph P. Roddy; Jonas C. Peters
We have recently reported on several Fe catalysts for N2-to-NH3 conversion that operate at low temperature (−78 °C) and atmospheric pressure while relying on a very strong reductant (KC8) and acid ([H(OEt2)2][BArF4]). Here we show that our original catalyst system, P3BFe, achieves both significantly improved efficiency for NH3 formation (up to 72% for e– delivery) and a comparatively high turnover number for a synthetic molecular Fe catalyst (84 equiv of NH3 per Fe site), when employing a significantly weaker combination of reductant (Cp*2Co) and acid ([Ph2NH2][OTf] or [PhNH3][OTf]). Relative to the previously reported catalysis, freeze-quench Mössbauer spectroscopy under turnover conditions suggests a change in the rate of key elementary steps; formation of a previously characterized off-path borohydrido–hydrido resting state is also suppressed. Theoretical and experimental studies are presented that highlight the possibility of protonated metallocenes as discrete PCET reagents under the present (and related) catalytic conditions, offering a plausible rationale for the increased efficiency at reduced driving force of this Fe catalyst system.
Dalton Transactions | 2011
Trevor J. Del Castillo; Soumya Sarkar; Khalil A. Abboud; Adam S. Veige
Dalton Transactions | 2013
Andrew R. Powers; Xi Yang; Trevor J. Del Castillo; Ion Ghiviriga; Khalil A. Abboud; Adam S. Veige
Dalton Transactions | 2012
Matthew E. O'Reilly; Trevor J. Del Castillo; Khalil A. Abboud; Adam S. Veige
Organometallics | 2017
Xi Yang; Sudarsan VenkatRamani; Christopher C. Beto; Trevor J. Del Castillo; Ion Ghiviriga; Khalil A. Abboud; Adam S. Veige
Archive | 2016
Jonas C. Peters; Trevor J. Del Castillo; Jonathan Rittle; Niklas B. Thompson
Archive | 2015
Jonas C. Peters; Sidney E. Creutz; Trevor J. Del Castillo; Jonathan Rittle; Niklas B. Thompson
Archive | 2014
Trevor J. Del Castillo; Daniel L. M. Suess; Jonas C. Peters