Trevor M. Willey
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trevor M. Willey.
Science | 2007
Wanli Yang; Jason D. Fabbri; Trevor M. Willey; J I Lee; Jeremy E. Dahl; Robert M. Carlson; Peter R. Schreiner; Andrey A. Fokin; Boryslav A. Tkachenko; Nataliya A. Fokina; W. Meevasana; Norman Mannella; K. Tanaka; X. Zhou; T. van Buuren; Michael A. Kelly; Z. Hussain; Nicholas A. Melosh; Zhi-Xun Shen
We found monochromatic electron photoemission from large-area self-assembled monolayers of a functionalized diamondoid, [121]tetramantane-6-thiol. Photoelectron spectra of the diamondoid monolayers exhibited a peak at the low–kinetic energy threshold; up to 68% of all emitted electrons were emitted within this single energy peak. The intensity of the emission peak is indicative of diamondoids being negative electron affinity materials. With an energy distribution width of less than 0.5 electron volts, this source of monochromatic electrons may find application in technologies such as electron microscopy, electron beam lithography, and field-emission flat-panel displays.
Journal of Physical Chemistry Letters | 2011
Marcus A. Worsley; Tammy Y. Olson; Jonathan R. I. Lee; Trevor M. Willey; Michael H. Nielsen; Sarah K. Roberts; Peter J. Pauzauskie; Juergen Biener; Joe H. Satcher; Theodore F. Baumann
Developing three-dimensional (3D) graphene assemblies with properties similar to those individual graphene sheets is a promising strategy for graphene-based electrodes. Typically, the synthesis of 3D graphene assemblies relies on van der Waals forces for holding the graphene sheets together, resulting in bulk properties that do not reflect those reported for individual graphene sheets. Here, we report the use of sol-gel chemistry to introduce chemical bonding between the graphene sheets and control the bulk properties of graphene-based aerogels. Adjusting synthetic parameters allows a wide range of control over surface area, pore volume, and pore size, as well as the nature of the chemical cross-links (sp(2) vs sp(3)). The bulk properties of the graphene-based aerogels represent a significant step toward realizing the properties of individual graphene sheets in a 3D assembly with surface areas approaching the theoretical value of an individual sheet.
Applied Physics Letters | 2004
C. Bostedt; T. van Buuren; Trevor M. Willey; N. Franco; Louis J. Terminello; C. Heske; T. Möller
Quantum-confinement effects in the conduction band of deposited germanium nanocrystals are measured to be greater than in similar-sized silicon nanocrystals. The germanium particles are condensed out of the gas phase and their electronic properties are determined with x-ray absorption spectroscopy. The conduction band edge shifts range from 0.2 eV for 2.7 nm particles up to 1.1 eV for 1.2 nm particles.
Advanced Materials | 2012
Juergen Biener; Subho Dasgupta; Lihua Shao; Di Wang; Marcus A. Worsley; Arne Wittstock; Jonathan R. I. Lee; Monika M. Biener; Christine A. Orme; S. O. Kucheyev; Brandon C. Wood; Trevor M. Willey; Alex V. Hamza; J. Weissmüller; Horst Hahn; Theodore F. Baumann
Polymer-derived, monolithic three-dimensional nanographene (3D-NG) bulk material with tunable properties is produced by a simple and inexpensive approach. The material is mass-producible, and combines chemical inertness and mechanical strength with a hierarchical porous architecture and a graphene-like surface area. This provides an opportunity to control its electron transport and mechanical properties dynamically by means of electrochemical-induced interfacial electric fields.
Physical Review Letters | 2008
Anton Barty; Stefano Marchesini; Henry N. Chapman; Congwu Cui; Malcolm R. Howells; David A. Shapiro; Andrew M. Minor; John C. Spence; Uwe Weierstall; Jan Ilavsky; Aleksandr Noy; Stefan P. Hau-Riege; Alexander B. Artyukhin; Theodore F. Baumann; Trevor M. Willey; J Stolken; T. van Buuren; J.H. Kinney
Ultralow density polymers, metals, and ceramic nanofoams are valued for their high strength-to-weight ratio, high surface area, and insulating properties ascribed to their structural geometry. We obtain the labrynthine internal structure of a tantalum oxide nanofoam by x-ray diffractive imaging. Finite-element analysis from the structure reveals mechanical properties consistent with bulk samples and with a diffusion-limited cluster aggregation model, while excess mass on the nodes discounts the dangling fragments hypothesis of percolation theory.
Journal of the American Chemical Society | 2008
Trevor M. Willey; Jason D. Fabbri; Jonathan R. I. Lee; Peter R. Schreiner; Andrey A. Fokin; Boryslav A. Tkachenko; Nataliya A. Fokina; Jeremy E. Dahl; Robert M. Carlson; Andrew L. Vance; Wanli Yang; Louis J. Terminello; Tony van Buuren; Nicolas A. Melosh
Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 +/- 0.05 and 0.16 +/- 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.
Journal of Chemical Physics | 2010
Lasse Landt; Matthias Staiger; David Wolter; Kathrin Klünder; Peter Zimmermann; Trevor M. Willey; Tony van Buuren; Daniel E. Brehmer; Peter R. Schreiner; Boryslav A. Tkachenko; Andrey A. Fokin; T. Möller; Christoph Bostedt
At the nanoscale, the surface becomes pivotal for the properties of semiconductors due to an increased surface-to-bulk ratio. Surface functionalization is a means to include semiconductor nanocrystals into devices. In this comprehensive experimental study we determine in detail the effect of a single thiol functional group on the electronic and optical properties of the hydrogen-passivated nanodiamond adamantane. We find that the optical properties of the diamondoid are strongly affected due to a drastic change in the occupied states. Compared to adamantane, the optical gap in adamantane-1-thiol is lowered by approximately 0.6 eV and UV luminescence is quenched. The lowest unoccupied states remain delocalized at the cluster surface leaving the diamondoids negative electron affinity intact.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Peter J. Pauzauskie; Jonathan C. Crowhurst; Marcus A. Worsley; Ted A. Laurence; A. L. David Kilcoyne; Yinmin Wang; Trevor M. Willey; Kenneth S. Visbeck; Sirine C. Fakra; William J. Evans; Joseph M. Zaug; Joe H. Satcher
Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel’s void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.
Langmuir | 2006
Jonathan R. I. Lee; Trevor M. Willey; Joakim Nilsson; Louis J. Terminello; and James J. De Yoreo; Tony van Buuren
Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, photoemission spectroscopy (PES), and contact angle measurements have been used to examine the structure and bonding of self-assembled monolayers (SAMs) prepared on Au(111) from the positional isomers of mercaptobenzoic acid (MBA). The isomer of MBA and solvent chosen in SAM preparation has considerable bearing upon film morphology. Carbon K-edge NEXAFS measurements indicate that the monomers of 2-, 3-, and 4-MBA have well-defined orientations within their respective SAMs. Monomers of 3- and 4-MBA assume an upright orientation on the Au substrates in monolayers prepared using an acetic acid in ethanol solvent. The aryl ring and carboxyl group of these molecules are tilted from the surface normal by a colatitudal angle of approximately 30 degrees . Preparation of 4-MBA SAMs using pure ethanol solvent, a more traditional means of synthesis, had no appreciable effect upon the monomer orientation. Nonetheless, S(2p) PES measurements illustrate that it results in extensive bilayer formation via carboxyl group hydrogen-bonding between 4-MBA monomers. In 2-MBA monolayers prepared using acetic acid/ethanol solvent, the monomers adopt a more prostrate orientation on the Au substrates, in which the aryl ring and carboxyl group of the molecules are tilted approximately 50 degrees from the surface normal. This configuration is consistent with an interaction between both the mercaptan sulfur and carboxyl group of 2-MBA with the underlying substrate. S(2p) and C(1s) PES experiments provide supporting evidence for a bidentate interaction between 2-MBA and Au(111).
Journal of Applied Physics | 2015
Michael Bagge-Hansen; Ralph Hodgin; Sorin Bastea; Laurence E. Fried; A. Jones; T. van Buuren; D. Hansen; J. Benterou; Chadd May; T. J. Graber; B. J. Jensen; Jan Ilavsky; Trevor M. Willey
The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. T...