Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trevor W. Alexander is active.

Publication


Featured researches published by Trevor W. Alexander.


Journal of Environmental Quality | 2009

A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak.

Weiping Xu; Tim Reuter; G. Douglas Inglis; Francis J. Larney; Trevor W. Alexander; Jiewen Guan; Kim Stanford; Yongping Xu; Tim A. McAllister

During outbreaks of infectious animal diseases, composting may be an effective method of disposing of mortalities and potentially contaminated manure. Duplicate biosecure structures containing 16 cattle (Bos taurus) mortalities (343 kg average weight) were constructed with carcasses placed on a 40-cm straw layer and overlaid with 160 cm of feedlot manure. At a depth of 80 cm (P80), compost heated rapidly, exceeding 55 degrees C after 8 d and maintained temperatures of 55 to 65 degrees C for > 35 d. Temperatures at 160 cm (P160) failed to exceed 55 degrees C, but remained above 40 degrees C for >4 mo. To investigate rates of microbial inactivation, Escherichia coli O157:H7, Campylobacter jejuni, and Newcastle disease virus (NDV) were inoculated in manure (E. coli O157:H7 and C. jejuni approximately 10(8) CFU g(-1); NDV, approximately 10(6) EID(50) g(-1)), embedded at P80 and P160 and retrieved at intervals during composting. Escherichia coli O157:H7 and NDV were undetectable after 7 d at both depths. The C. jejuni DNA was detected up to 84 d at P80 and >147 d at P160. To estimate degradation of recalcitrant substrates, bovine brain, hoof, and rib bones were also embedded at P80 and P160 and retrieved at intervals. Residues of soft tissues remained in carcasses after opening at 147 d and bovine tissue decomposition ranked as brain > hoof > bone. More than 90% dry matter (DM) of brain disappeared after 7 d and 80% DM of hoof decomposed after 56 d. High degradation of cattle carcasses, rapid suppression of E. coli O157:H7 and NDV and reduction in viable cell densities of >6 logs for C. jejuni demonstrates that the biosecure composting system can dispose of cattle carcasses and manure in an infectious disease outbreak.


Journal of Clinical Microbiology | 2014

Pathogens of Bovine Respiratory Disease in North American Feedlots Conferring Multidrug Resistance via Integrative Conjugative Elements

Cassidy L. Klima; Rahat Zaheer; Shaun R. Cook; Calvin W. Booker; Steve Hendrick; Trevor W. Alexander; Tim A. McAllister

ABSTRACT In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.


Veterinary Microbiology | 2011

Genetic characterization and antimicrobial susceptibility of Mannheimia haemolytica isolated from the nasopharynx of feedlot cattle.

C.L. Klima; Trevor W. Alexander; Ron Read; Sheryl P. Gow; Calvin W. Booker; S. Hannon; C. Sheedy; T. A. McAllister; L.B. Selinger

A surveillance study was undertaken to examine the population dynamics and antimicrobial resistance of Mannheimia haemolytica isolated from feedlot cattle. A total of 416 isolates were collected from the nasopharynx either upon entry or exit from two feedlots in southern Alberta, Canada. Isolates were serotyped, characterized by pulsed-field gel electrophoresis and tested for susceptibility to ten antimicrobial agents via disk diffusion. Resistant isolates were screened by PCR for select antimicrobial-resistance gene determinants. Isolates were highly diverse, with 335 unique pulsed-field profiles identified among 147 strongly related clusters (similarity ≥ 85%). Clonal spread of isolates throughout the feedlots was limited and no clear association was found between genetic relatedness of M. haemolytica and sampling event (entry or exit). Pulsed-field profiles sharing a common serotype and resistance phenotype tended to cluster together. The majority of isolates were identified as serotype 2 (74.5%) although both serotype 1 (11.9%) and 6 (12.7%) were detected. Only 9.54% of isolates exhibited antimicrobial resistance. Resistance to oxytetracycline was most prevalent (n=16), followed by ampicillin (n=10), and amoxicillin/clavulanic acid (n=7). Multi-drug resistance was observed in five isolates. The tetH gene was detected in all but two oxytetracycline resistant isolates. Other detectable resistance determinates included ermX and bla(ROB-1). In the two feedlots examined, M. haemolytica exhibited considerable genetic diversity and limited resistance to common veterinary antibiotics. Garnering further information on the linkage between genotype and phenotype should contribute toward a better understanding of the pathogenesis and dissemination of M. haemolytica in feedlots.


Veterinary Microbiology | 2008

A multiplex polymerase chain reaction assay for the identification of Mannheimia haemolytica, Mannheimia glucosida and Mannheimia ruminalis.

Trevor W. Alexander; Shaun R. Cook; L. Jay Yanke; Calvin W. Booker; Paul S. Morley; Ron Read; Sheryl P. Gow; Tim A. McAllister

The objective of this study was to design a multiplex PCR assay to identify Mannheimia haemolytica, Mannheimia glucosida and Mannheimia ruminalis. The multiplex PCR included primer sets HP, amplifying a DNA region from an unknown hypothetical protein, Lkt and Lkt2, amplifying different regions of the leukotoxinD gene, and 16S to amplify universal bacterial sequences of the 16S rRNA gene. Based on positive amplification, isolates were delineated as M. haemolytica (HP, Lkt, 16S), M. glucosida (HP, Lkt, Lkt2, 16S), or M. ruminalis (HP, 16S). The validity of the assay was examined against 22 reference strains within the family Pasteurellaceae and 17 field isolates (nasal) that had been collected previously from feedlot cattle and tentatively identified as M. haemolytica based on morphology and substrate utilization. Additionally, 200 feedlot cattle were screened for M. haemolytica using multiplex PCR. Forty-four isolates from 25 animals were identified as M. haemolytica. The PCR assay positively identified all M. haemolytica, as confirmed by phenotypic tests and clustering based upon cellular fatty acid methyl ester (FAME) profiles. Selected nasal isolates that exhibited evidence of haemolysis, but were M. haemolytica-negative based on PCR, were also confirmed negative by phenotypic and FAME analyses. The multiplex PCR assay required no additional phenotypic tests for confirmation of M. haemolytica, within the group of bacteria tested.


Scientific Reports | 2015

The nasopharyngeal microbiota of feedlot cattle

Devin B. Holman; Edouard Timsit; Trevor W. Alexander

The bovine nasopharyngeal tract plays an important role in animal health and welfare by acting as a site for the carriage of pathogens causing bovine respiratory disease, a condition which results in significant morbidity and mortality in feedlot cattle. We characterized the bacterial nasopharyngeal microbiota in cattle at feedlot entry (day 0) and day 60 using 454 pyrosequencing. We also identified the most frequently isolated aerobic bacteria from nasopharyngeal swabs after plating onto three types of media. The cattle nasopharyngeal microbiota was composed primarily of Proteobacteria (68.9%) and Firmicutes (19.2%). At the genus-level, there was more inter-individual variability and a total of 55 genera were identified. The genera Pseudomonas (23.7%), Shewanella (23.5%), Acinetobacter (17.5%), and Carnobacterium (12.2%) were most prevalent at entry, while after 60 days in the feedlot, Staphylococcus (20.8%), Mycoplasma (14.9%), Mannheimia (10.4%), and Moraxella (9.4%) were dominant. The nasopharyngeal microbiota also became more homogenous after 60 days in the feedlot and differed in structure at day 0 and 60. Using culture-based methods, the most frequently isolated bacteria from nasopharyngeal swabs were Bacillus, Staphylococcus, Moraxella, Pasteurella, and Mannheimia. These results provide insight into the nasopharyngeal microbiota of cattle and demonstrate that specific changes take place during feedlot production.


Frontiers in Microbiology | 2013

Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle.

Rahat Zaheer; Shaun R. Cook; Cassidy L. Klima; Kim Stanford; Trevor W. Alexander; Edward Topp; Ron Read; Tim A. McAllister

Macrolides are the first-line treatment against bovine respiratory disease (BRD), and are also used to treat infections in humans. The macrolide, tylosin phosphate, is often included in the diet of cattle as a preventative for liver abscesses in many regions of the world outside of Europe. This study investigated the effects of administering macrolides to beef cattle either systemically through a single subcutaneous injection (therapeutic) or continuously in-feed (subtherapeutic), on the prevalence and antimicrobial resistance of Mannheimia haemolytica and Enterococcus spp. isolated from the nasopharynx and faeces, respectively. Nasopharyngeal and faecal samples were collected weekly over 28 days from untreated beef steers and from steers injected once with tilmicosin or tulathromycin or continuously fed tylosin phosphate at dosages recommended by manufacturers. Tilmicosin and tulathromycin were effective in lowering (P < 0.05) the prevalence of M. haemolytica, whereas subtherapeutic tylosin had no effect. M. haemolytica isolated from control- and macrolide-treated animals were susceptible to macrolides as well as to other antibiotics. Major bacteria co-isolated with M. haemolytica from the nasopharynx included Pasteurella multocida, Staphylococcus spp., Acinetobacter spp., Escherichia coli and Bacillus spp. With the exception of M. haemolytica and P. multocida, erythromycin resistance was frequently found in other isolated species. Both methods of macrolide administration increased (P < 0.05) the proportion of erythromycin resistant enterococci within the population, which was comprised almost exclusively of Enterococcus hirae. Injectable macrolides impacted both respiratory and enteric microbes, whereas orally administered macrolides only influenced enteric bacteria.


British Journal of Nutrition | 2004

Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures

Ranjana Sharma; Trevor W. Alexander; S. Jacob John; Robert J. Forster; Tim A. McAllister

The use of transgenic crops as feeds for ruminant animals has prompted study of the possible uptake of transgene fragments by ruminal micro-organisms and/or intestinal absorption of fragments surviving passage through the rumen. The persistence in buffered ruminal contents of seven different recombinant DNA fragments from GM rapeseed expressing the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgene was tracked using PCR. Parental and transgenic (i.e. glyphosphate-tolerant; Roundup Ready, Monsanto Company, St Louis, MO, USA) rapeseed were incubated for 0, 2, 4, 8, 12, 24 and 48 h as whole seeds, cracked seeds, rapeseed meal, and as pelleted, barley-based diets containing 65 g rapeseed meal/kg. The seven transgene fragments ranged from 179 to 527 bp and spanned the entire 1363 bp EPSPS transgene. A 180 bp ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit fragment and a 466 bp 16S rDNA fragment were used as controls for endogenous rapeseed DNA and bacterial DNA respectively. The limit of detection of the PCR assay, established using negative controls spiked with known quantities of DNA, was 12.5 pg. Production of gas and NH3 was monitored throughout the incubation and confirmed active in vitro fermentation. Bacterial DNA was detected in all sample types at all time points. Persistence patterns of endogenous (Rubisco) and recombinant (EPSPS) rapeseed DNA were inversely related to substrate digestibility (amplifiable for 48, 8 and 4 h in whole or cracked seeds, meal and diets respectively), but did not differ between parental and GM rapeseed, nor among fragments. Detection of fragments was representative of persistence of the whole transgene. No EPSPS fragments were amplifiable in microbial DNA, suggesting that transformation had not occurred during the 48 h incubation. Uptake of transgenic DNA fragments by ruminal bacteria is probably precluded or time-limited by rapid degradation of plant DNA upon plant cell lysis.


Veterinary Microbiology | 2015

The nasopharyngeal microbiota of feedlot cattle that develop bovine respiratory disease.

Devin B. Holman; Tim A. McAllister; Edward Topp; André-Denis G. Wright; Trevor W. Alexander

Bovine respiratory disease is the major cause of morbidity and mortality in feedlot cattle. The objective of this study was to compare the nasopharyngeal bacterial microbiota of healthy cattle and cattle treated for BRD in a commercial feedlot setting using a high-density 16S rRNA gene microarray (Phylochip). Samples were taken from both groups of animals (n=5) at feedlot entry (day 0) and ≥60 days after placement. Cattle diagnosed with BRD had significantly less bacterial diversity and fewer OTUs in their nasopharynx at both sampling times. The predominant phyla in both groups were Proteobacteria and Firmicutes. The relative abundance of the phylum Actinobacteria was lower in cattle treated for BRD. At the family-level there was a greater relative abundance (P<0.05) of Micrococcaceae (day 0 only), Lachnospiraceae (≥60 days), Lactobacillaceae (day 0), and Bacillaceae (day 0) in healthy cattle compared to BRD-affected cattle. The community structure of the BRD-affected and healthy cattle were also significantly different from each other at both sampling times as measured using unweighted UniFrac distances. All entry samples of cattle diagnosed with BRD had 16S rRNA gene sequences representative of the BRD-associated bacteria Mannheimia haemolytica or Pasteurella multocida, although 3/5 healthy cattle were also positive for M. haemolytica at this time point. The results also indicate that the bovine nasopharyngeal microbiota is relatively unstable during the first 60 days in the feedlot.


Veterinary Microbiology | 2016

Evolution of the nasopharyngeal microbiota of beef cattle from weaning to 40 days after arrival at a feedlot

Edouard Timsit; Matthew L. Workentine; Anthony B. Schryvers; Devin B. Holman; Frank van der Meer; Trevor W. Alexander

Bovine respiratory disease complex (BRDc) is a major cause of morbidity and mortality in beef cattle. There is recent evidence suggesting that the nasopharyngeal microbiota has a key role in respiratory health and disease susceptibility in cattle. However, there is a paucity of knowledge regarding evolution of the nasopharyngeal microbiota when cattle are most likely to develop BRDc (i.e., from weaning to 40days after arrival at a feedlot). The objective was to describe the evolution of the nasopharyngeal microbiota of beef cattle from weaning to 40days after arrival at a feedlot. Deep nasal swabs (DNS) from 30 Angus-cross steers were collected at weaning, on arrival at a feedlot, and at day 40 after arrival. The DNA was extracted from DNS and the hypervariable region V3 of the 16S rRNA gene was amplified and sequenced (Illumina MiSeq platform). Nasopharyngeal microbiota underwent a profound evolution from weaning to arrival at the feedlot and from arrival to day 40, with the abundance of 92 Operational Taxonomic Units (OTUs) significantly changing over time. Mycoplasma (M. dispar and M. bovirhinis) was the most abundant genus in the nasopharynx, accounting for 53% of the total bacterial population. Because an evolving bacterial community may be less capable of resisting colonization by pathogenic bacteria, the instability of the nasopharyngeal microbiota documented in this study might explain why cattle are most likely to be affected with BRDc during the first weeks after weaning and arrival at a feedlot.


British Journal of Nutrition | 2006

Conventional and real-time polymerase chain reaction assessment of the fate of transgenic DNA in sheep fed Roundup Ready® rapeseed meal

Trevor W. Alexander; Tim Reuter; E. K. Okine; Ranjana Sharma; Tim A. McAllister

Conventional and real-time PCR were used to detect transgenic DNA in digesta, faeces and blood collected from six ruminally and duodenally cannulated sheep fed forage-based (F) or concentrate-based (C) diets containing 15% Roundup Ready (RR) rapeseed meal (n 3). The sheep were adapted for 14 d to F or C diets containing non-GM rapeseed, then fed the RR diets for 11 d. On day 12, they were switched back to non-GM diets for a further 11 d. Ruminal and duodenal fluids (RF, DF) and faecal samples were collected at 3 or 4 h intervals over the 4 d immediately following the last feeding of GM diets. DNA was isolated from whole RF and DF, from the cell-free supernatant fraction, and from culture fermentation liquid. Blood was collected on days 1, 5 and 9 of feeding the RR rapeseed meal. The 1363 bp 5-enolpyruvylshikimate-3-phosphate synthase transgene (epsps) was quantifiable in whole RF and DF for up to 13 h, and a 108 bp epsps fragment for up to 29 h. Transgenic DNA was not detectable in faeces or blood, or in microbial DNA. Diet type (F v. C) did not affect (P>0.05) the quantity of transgenic DNA in digesta. More (P<0.05) transgenic DNA was detected in RF than in DF, but there was an interaction (P<0.05) between sample type and collection time. In supernatant fractions from RF and DF, three different fragments of transgenic DNA ranging in size from 62 to 420 bp were not amplifiable.

Collaboration


Dive into the Trevor W. Alexander's collaboration.

Top Co-Authors

Avatar

Tim A. McAllister

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Reuter

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Devin B. Holman

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Cassidy L. Klima

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Shaun R. Cook

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

T. A. McAllister

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Rahat Zaheer

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Ron Read

University of Calgary

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge