Triantafyllos Stylianopoulos
University of Cyprus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Triantafyllos Stylianopoulos.
Nature Reviews Clinical Oncology | 2010
Rakesh K. Jain; Triantafyllos Stylianopoulos
Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. While the enhanced permeability and retention effect has served as a key rationale for using nanoparticles to treat solid tumors, it does not enable uniform delivery of these particles to all regions of tumors in sufficient quantities. This heterogeneous distribution of therapeutics is a result of physiological barriers presented by the abnormal tumor vasculature and interstitial matrix. These barriers are likely to be responsible for the modest survival benefit offered by many FDA-approved nanotherapeutics and must be overcome for the promise of nanomedicine in patients to be realized. Here, we review these barriers to the delivery of cancer therapeutics and summarize strategies that have been developed to overcome these barriers. Finally, we discuss design considerations for optimizing the delivery of nanoparticles to tumors.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Cliff R. Wong; Triantafyllos Stylianopoulos; Jian Cui; John D. Martin; Vikash P. Chauhan; Wen Jiang; Zoran Popović; Rakesh K. Jain; Moungi G. Bawendi; Dai Fukumura
Current Food and Drug Administration-approved cancer nanotherapeutics, which passively accumulate around leaky regions of the tumor vasculature because of an enhanced permeation and retention (EPR) effect, have provided only modest survival benefits. This suboptimal outcome is likely due to physiological barriers that hinder delivery of the nanotherapeutics throughout the tumor. Many of these nanotherapeutics are ≈100 nm in diameter and exhibit enhanced accumulation around the leaky regions of the tumor vasculature, but their large size hinders penetration into the dense collagen matrix. Therefore, we propose a multistage system in which 100-nm nanoparticles “shrink” to 10-nm nanoparticles after they extravasate from leaky regions of the tumor vasculature and are exposed to the tumor microenvironment. The shrunken nanoparticles can more readily diffuse throughout the tumors interstitial space. This size change is triggered by proteases that are highly expressed in the tumor microenvironment such as MMP-2, which degrade the cores of 100-nm gelatin nanoparticles, releasing smaller 10-nm nanoparticles from their surface. We used quantum dots (QD) as a model system for the 10-nm particles because their fluorescence can be used to demonstrate the validity of our approach. In vitro MMP-2 activation of the multistage nanoparticles revealed that the size change was efficient and effective in the enhancement of diffusive transport. In vivo circulation half-life and intratumoral diffusion measurements indicate that our multistage nanoparticles exhibited both the long circulation half-life necessary for the EPR effect and the deep tumor penetration required for delivery into the tumors dense collagen matrix.
Nature Medicine | 2009
Benjamin J. Vakoc; Ryan M. Lanning; James Alex Tyrrell; Timothy P. Padera; Lisa A. Bartlett; Triantafyllos Stylianopoulos; Guillermo J. Tearney; Dai Fukumura; Rakesh K. Jain; Brett E. Bouma
Intravital multiphoton microscopy has provided powerful mechanistic insights into health and disease and has become a common instrument in the modern biological laboratory. The requisite high numerical aperture and exogenous contrast agents that enable multiphoton microscopy, however, limit the ability to investigate substantial tissue volumes or to probe dynamic changes repeatedly over prolonged periods. Here we introduce optical frequency domain imaging (OFDI) as an intravital microscopy that circumvents the technical limitations of multiphoton microscopy and, as a result, provides unprecedented access to previously unexplored, crucial aspects of tissue biology. Using unique OFDI-based approaches and entirely intrinsic mechanisms of contrast, we present rapid and repeated measurements of tumor angiogenesis, lymphangiogenesis, tissue viability and both vascular and cellular responses to therapy, thereby demonstrating the potential of OFDI to facilitate the exploration of physiological and pathological processes and the evaluation of treatment strategies.
Annual Review of Chemical and Biomolecular Engineering | 2011
Vikash P. Chauhan; Triantafyllos Stylianopoulos; Yves Boucher; Rakesh K. Jain
Tumors are similar to organs, with unique physiology giving rise to an unusual set of transport barriers to drug delivery. Cancer therapy is limited by nonuniform drug delivery via blood vessels, inhomogeneous drug transport into tumor interstitium from the vascular compartment, and hindered transport through tumor interstitium to the target cells. Four major abnormal physical and physiological properties contribute to these transport barriers. Accumulated solid stress compresses blood vessels to diminish the drug supply to many tumor regions. Immature vasculature with high viscous and geometric resistances and reduced pressure gradients leads to sluggish and heterogeneous blood flow in tumors to further limit drug supply. Nonfunctional lymphatics coupled with highly permeable blood vessels result in elevated hydrostatic pressure in tumors to abrogate convective drug transport from blood vessels into and throughout most of the tumor tissue. Finally, a dense structure of interstitial matrix and cells serves as a tortuous, viscous, and steric barrier to diffusion of therapeutic agents. In this review, we discuss the origins and implications of these barriers. We then highlight strategies for overcoming these barriers by modulating either drug properties or the tumor microenvironment itself to enhance the delivery and effectiveness of drugs in tumors.
Nature Communications | 2013
Vikash P. Chauhan; John D. Martin; Hao Liu; Delphine A. Lacorre; Saloni R. Jain; Sergey V. Kozin; Triantafyllos Stylianopoulos; Ahmed S. Mousa; Xiaoxing Han; Pichet Adstamongkonkul; Zoran Popović; Peigen Huang; Moungi G. Bawendi; Yves Boucher; Rakesh K. Jain
Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors —inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer therapeutics.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Triantafyllos Stylianopoulos; John D. Martin; Vikash P. Chauhan; Saloni R. Jain; Benjamin Diop-Frimpong; Nabeel Bardeesy; Barbara L. Smith; Cristina R. Ferrone; Francis J. Hornicek; Yves Boucher; Rakesh K. Jain
The presence of growth-induced solid stresses in tumors has been suspected for some time, but these stresses were largely estimated using mathematical models. Solid stresses can deform the surrounding tissues and compress intratumoral lymphatic and blood vessels. Compression of lymphatic vessels elevates interstitial fluid pressure, whereas compression of blood vessels reduces blood flow. Reduced blood flow, in turn, leads to hypoxia, which promotes tumor progression, immunosuppression, inflammation, invasion, and metastasis and lowers the efficacy of chemo-, radio-, and immunotherapies. Thus, strategies designed to alleviate solid stress have the potential to improve cancer treatment. However, a lack of methods for measuring solid stress has hindered the development of solid stress-alleviating drugs. Here, we present a simple technique to estimate the growth-induced solid stress accumulated within animal and human tumors, and we show that this stress can be reduced by depleting cancer cells, fibroblasts, collagen, and/or hyaluronan, resulting in improved tumor perfusion. Furthermore, we show that therapeutic depletion of carcinoma-associated fibroblasts with an inhibitor of the sonic hedgehog pathway reduces solid stress, decompresses blood and lymphatic vessels, and increases perfusion. In addition to providing insights into the mechanopathology of tumors, our approach can serve as a rapid screen for stress-reducing and perfusion-enhancing drugs.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Triantafyllos Stylianopoulos; Rakesh K. Jain
Significance Vascular normalization and stress-alleviation treatments are promising strategies to improve tumor perfusion and delivery of drugs. Vascular normalization is more effective for tumors with hyperpermeable but uncompressed vessels, whereas stress alleviation is more beneficial for compressed but low-permeable vessels. In the case of tumors with hyperpermeable and compressed vessels, the two strategies need to be combined for improved treatment. Blood perfusion in tumors can be significantly lower than that in the surrounding normal tissue owing to the leakiness and/or compression of tumor blood vessels. Impaired perfusion reduces oxygen supply and results in a hypoxic microenvironment. Hypoxia promotes tumor progression and immunosuppression, and enhances the invasive and metastatic potential of cancer cells. Furthermore, poor perfusion lowers the delivery of systemically administered drugs. Therapeutic strategies to improve perfusion include reduction in vascular permeability by vascular normalization and vascular decompression by alleviating physical forces (solid stress) inside tumors. Both strategies have shown promise, but guidelines on how to use these strategies optimally are lacking. To this end, we developed a mathematical model to guide the optimal use of these strategies. The model accounts for vascular, transvascular, and interstitial fluid and drug transport as well as the diameter and permeability of tumor vessels. Model simulations reveal an optimal perfusion region when vessels are uncompressed, but not very leaky. Within this region, intratumoral distribution of drugs is optimized, particularly for drugs 10 nm in diameter or smaller and of low binding affinity. Therefore, treatments should modify vessel diameter and/or permeability such that perfusion is optimal. Vascular normalization is more effective for hyperpermeable but largely uncompressed vessels (e.g., glioblastomas), whereas solid stress alleviation is more beneficial for compressed but less-permeable vessels (e.g., pancreatic ductal adenocarcinomas). In the case of tumors with hyperpermeable and compressed vessels (e.g., subset of mammary carcinomas), the two strategies need to be combined for improved treatment outcomes.
Cancer Research | 2013
Triantafyllos Stylianopoulos; John D. Martin; Matija Snuderl; Fotios Mpekris; Saloni R. Jain; Rakesh K. Jain
The stress harbored by the solid phase of tumors is known as solid stress. Solid stress can be either applied externally by the surrounding normal tissue or induced by the tumor itself due to its growth. Fluid pressure is the isotropic stress exerted by the fluid phase. We recently showed that growth-induced solid stress is on the order of 1.3 to 13.0 kPa (10-100 mmHg)--high enough to cause compression of fragile blood vessels, resulting in poor perfusion and hypoxia. However, the evolution of growth-induced stress with tumor progression and its effect on cancer cell proliferation in vivo is not understood. To this end, we developed a mathematical model for tumor growth that takes into account all three types of stresses: growth-induced stress, externally applied stress, and fluid pressure. First, we conducted in vivo experiments and found that growth-induced stress is related to tumor volume through a biexponential relationship. Then, we incorporated this information into our mathematical model and showed that due to the evolution of growth-induced stress, total solid stress levels are higher in the tumor interior and lower in the periphery. Elevated compressive solid stress in the interior of the tumor is sufficient to cause the collapse of blood vessels and results in a lower growth rate of cancer cells compared with the periphery, independently from that caused by the lack of nutrients due to vessel collapse. Furthermore, solid stress in the periphery of the tumor causes blood vessels in the surrounding normal tissue to deform to elliptical shapes. We present histologic sections of human cancers that show such vessel deformations. Finally, we found that fluid pressure increases with tumor growth due to increased vascular permeability and lymphatic impairment, and is governed by the microvascular pressure. Crucially, fluid pressure does not cause vessel compression of tumor vessels.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Edward A. Sander; Triantafyllos Stylianopoulos; Robert T. Tranquillo; Victor H. Barocas
The mechanical environment plays an important role in cell signaling and tissue homeostasis. Unraveling connections between externally applied loads and the cellular response is often confounded by extracellular matrix (ECM) heterogeneity. Image-based multiscale models provide a foundation for examining the fine details of tissue behavior, but they require validation at multiple scales. In this study, we developed a multiscale model that captured the anisotropy and heterogeneity of a cell-compacted collagen gel subjected to an off-axis hold mechanical test and subsequently to biaxial extension. In both the model and experiments, the ECM reorganized in a nonaffine and heterogeneous manner that depended on multiscale interactions between the fiber networks. Simulations predicted that tensile and compressive fiber forces were produced to accommodate macroscopic displacements. Fiber forces in the simulation ranged from −11.3 to 437.7 nN, with a significant fraction of fibers under compression (12.1% during off-axis stretch). The heterogeneous network restructuring predicted by the model serves as an example of how multiscale modeling techniques provide a theoretical framework for understanding relationships between ECM structure and tissue-level mechanical properties and how microscopic fiber rearrangements could lead to mechanotransductive cell signaling.
Journal of The Mechanical Behavior of Biomedical Materials | 2008
Triantafyllos Stylianopoulos; Chris A. Bashur; Aaron S. Goldstein; Scott A. Guelcher; Victor H. Barocas
The mechanical properties of biomaterial scaffolds are crucial for their efficacy in tissue engineering and regenerative medicine. At the microscopic scale, the scaffold must be sufficiently rigid to support cell adhesion, spreading, and normal extracellular matrix deposition. Concurrently, at the macroscopic scale the scaffold must have mechanical properties that closely match those of the target tissue. The achievement of both goals may be possible by careful control of the scaffold architecture. Recently, electrospinning has emerged as an attractive means to form fused fibre scaffolds for tissue engineering. The diameter and relative orientation of fibres affect cell behaviour, but their impact on the tensile properties of the scaffolds has not been rigorously characterized. To examine the structure-property relationship, electrospun meshes were made from a polyurethane elastomer with different fibre diameters and orientations and mechanically tested to determine the dependence of the elastic modulus on the mesh architecture. Concurrently, a multiscale modelling strategy developed for type I collagen networks was employed to predict the mechanical behaviour of the polyurethane meshes. Experimentally, the measured elastic modulus of the meshes varied from 0.56 to 3.0 MPa depending on fibre diameter and the degree of fibre alignment. Model predictions for tensile loading parallel to fibre orientation agreed well with experimental measurements for a wide range of conditions when a fitted fibre modulus of 18 MPa was used. Although the model predictions were less accurate in transverse loading of anisotropic samples, these results indicate that computational modelling can assist in design of electrospun artificial tissue scaffolds.