Tricia A. Miller
West Virginia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tricia A. Miller.
Ecology Letters | 2012
Gil Bohrer; David Brandes; James T. Mandel; Keith L. Bildstein; Tricia A. Miller; Michael Lanzone; Todd E. Katzner; Charles Maisonneuve; Junior A. Tremblay
Soaring birds migrate in massive numbers worldwide. These migrations are complex and dynamic phenomena, strongly influenced by meteorological conditions that produce thermal and orographic uplift as the birds traverse the landscape. Herein we report on how methods were developed to estimate the strength of thermal and orographic uplift using publicly available digital weather and topography datasets at continental scale. We apply these methods to contrast flight strategies of two morphologically similar but behaviourally different species: golden eagle, Aquila chrysaetos, and turkey vulture, Cathartes aura, during autumn migration across eastern North America tracked using GPS tags. We show that turkey vultures nearly exclusively used thermal lift, whereas golden eagles primarily use orographic lift during migration. It has not been shown previously that migration tracks are affected by species-specific specialisation to a particular uplift mode. The methods introduced herein to estimate uplift components and test for differences in weather use can be applied to study movement of any soaring species.
PLOS ONE | 2012
Adam E. Duerr; Tricia A. Miller; Michael Lanzone; Dave Brandes; Jeff Cooper; Kieran O'Malley; Charles Maisonneuve; Junior A. Tremblay; Todd E. Katzner
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.
Biology Letters | 2012
Michael Lanzone; Tricia A. Miller; Philip J. Turk; David Brandes; Casey Halverson; Charles Maisonneuve; Junior A. Tremblay; Jeff Cooper; Kieran O'Malley; Robert P. Brooks; Todd E. Katzner
Soaring birds that undertake long-distance migration should develop strategies to minimize the energetic costs of endurance flight. This is relevant because condition upon completion of migration has direct consequences for fecundity, fitness and thus, demography. Therefore, strong evolutionary pressures are expected for energy minimization tactics linked to weather and topography. Importantly, the minute-by-minute mechanisms birds use to subsidize migration in variable weather are largely unknown, in large part because of the technological limitations in studying detailed long-distance bird flight. Here, we show golden eagle (Aquila chrysaetos) migratory response to changing meteorological conditions as monitored by high-resolution telemetry. In contrast to expectations, responses to meteorological variability were stereotyped across the 10 individuals studied. Eagles reacted to increased wind speed by using more orographic lift and less thermal lift. Concomitantly, as use of thermals decreased, variation in flight speed and altitude also decreased. These results demonstrate how soaring migrant birds can minimize energetic expenditures, they show the context for avian decisions and choices of specific instantaneous flight mechanisms and they have important implications for design of bird-friendly wind energy.
Conservation Biology | 2014
Tricia A. Miller; Robert P. Brooks; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O'Malley; Charles Maisonneuve; Junior A. Tremblay; Adam E. Duerr; Todd E. Katzner
When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development.
The Auk | 2012
Todd E. Katzner; Brian W. Smith; Tricia A. Miller; David Brandes; Jeff Cooper; Michael Lanzone; Daniel W. Brauning; Christopher J. Farmer; Sergio R. Harding; David Kramar; Craig Koppie; Charles Maisonneuve; Mark Martell; Elizabeth K. Mojica; Charlie Todd; Junior A. Tremblay; Maria Wheeler; David F. Brinker; Tony E. Chubbs; Rolf Gubler; Kieran O'Malley; Scott Mehus; Brady A. Porter; Robert P. Brooks; Bryan D. Watts; Keith L. Bildstein
TODD KATZNER,1,2,26 BRIAN W. SMITH,3 TRICIA A. MILLER,4,5 DAVID BRANDES,6 JEFF COOPER,7 MICHAEL LANZONE,5,8 DANIEL BRAUNING,9 CHRISTOPHER FARMER,10 SERGIO HARDING,11 DAVID E. KRAMAR,12 CRAIG KOPPIE,13 CHARLES MAISONNEUVE,14 MARK MARTELL,15 ELIZABETH K. MOJICA,16 CHARLIE TODD,17 JUNIOR A. TREMBLAY,18 MARIA WHEELER,19 DAVID F. BRINKER,20 TONY E. CHUBBS,21 ROLF GUBLER,22 KIERAN O’MALLEY,23 SCOTT MEHUS,24 BRADY PORTER,19 ROBERT P. BROOKS,4 BRYAN D. WATTS,16 AND KEITH L. BILDSTEIN25
Functional Ecology | 2015
Adam E. Duerr; Tricia A. Miller; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O'Malley; Charles Maisonneuve; Junior A. Tremblay; Todd E. Katzner
Animals respond to a variety of environmental cues, including weather conditions, when migrating. Understanding the relationship between weather and migration behaviour is vital to assessing time- and energy limitations of soaring birds. Different soaring modes have different efficiencies, are dependent upon different types of subsidized lift and are weather dependent. We collected GPS locations from 47 known-age golden eagles that moved along 83 migration tracks. We paired each location with weather to determine meteorological correlates of migration during spring and fall as birds crossed three distinct ecoregions in north-east North America. Golden eagle migration was associated with weather conditions that promoted thermal development, regardless of season, ecoregion or age. Eagle migration showed age- and season-specific responses to weather conditions that promoted orographic lift.
Journal of the Royal Society Interface | 2015
Todd E. Katzner; Philip J. Turk; Adam E. Duerr; Tricia A. Miller; Michael Lanzone; Jeff Cooper; David Brandes; Junior A. Tremblay; Jérôme Lemaître
Large birds regularly use updrafts to subsidize flight. Although most research on soaring bird flight has focused on use of thermal updrafts, there is evidence suggesting that many species are likely to use multiple modes of subsidy. We tested the degree to which a large soaring species uses multiple modes of subsidy to provide insights into the decision-making that underlies flight behaviour. We statistically classified more than 22 000 global positioning satellite–global system for mobile communications telemetry points collected at 30-s intervals to identify the type of subsidized flight used by 32 migrating golden eagles during spring in eastern North America. Eagles used subsidized flight on 87% of their journey. They spent 41.9% ± 1.5 (, range: 18–56%) of their subsidized northbound migration using thermal soaring, 45.2% ± 2.1 (12–65%) of time gliding between thermals, and 12.9% ± 2.2 (1–55%) of time using orographic updrafts. Golden eagles responded to the variable local-scale meteorological events they encountered by switching flight behaviour to take advantage of multiple modes of subsidy. Orographic soaring occurred more frequently in morning and evening, earlier in the migration season, and when crosswinds and tail winds were greatest. Switching between flight modes allowed migration for relatively longer periods each day and frequent switching behaviour has implications for a better understanding of avian flight behaviour and of the evolution of use of subsidy in flight.
Environmental Science & Technology | 2017
Frauke Ecke; Navinder J. Singh; Jon M. Arnemo; Anders Bignert; Björn Helander; Åsa Berglund; Hans Borg; Caroline Bröjer; Karin Holm; Michael Lanzone; Tricia A. Miller; Åke Nordström; Jannikke Räikkönen; Illia Rodushkin; Erik Ågren; Birger Hörnfeldt
Lead poisoning of animals due to ingestion of fragments from lead-based ammunition in carcasses and offal of shot wildlife is acknowledged globally and raises great concerns about potential behavioral effects leading to increased mortality risks. Lead levels in blood were correlated with progress of the moose hunting season. Based on analyses of tracking data, we found that even sublethal lead concentrations in blood (25 ppb, wet weight), can likely negatively affect movement behavior (flight height and movement rate) of free-ranging scavenging Golden Eagles (Aquila chrysaetos). Lead levels in liver of recovered post-mortem analyzed eagles suggested that sublethal exposure increases the risk of mortality in eagles. Such adverse effects on animals are probably common worldwide and across species, where game hunting with lead-based ammunition is widespread. Our study highlights lead exposure as a considerably more serious threat to wildlife conservation than previously realized and suggests implementation of bans of lead ammunition for hunting.
The Condor | 2015
David M. Nelson; Melissa A. Braham; Tricia A. Miller; Adam E. Duerr; Jeff Cooper; Michael Lanzone; Jérôme Lemaître; Todd E. Katzner
ABSTRACT Knowledge of the distribution and movements of populations of migratory birds is useful for the effective conservation and management of biodiversity. However, such information is often unavailable because of the difficulty of tracking sufficient numbers of individuals. We used more easily obtained feather stable hydrogen isotope ratios (δ2H) to predict the summer grounds of the small, threatened, and migratory population of Golden Eagles (Aquila chrysaetos) in eastern North America. We then identified summer locations and the extent of migratory connectivity for this population. We collected δ2H (δ2Hf), stable carbon isotope (δ13C), and stable nitrogen isotope (δ15N) data from the body feathers of 47 juvenile, subadult, and adult Golden Eagles. Values of δ13C and δ15N suggested that all but 2 birds obtained food from terrestrial-based food webs and therefore that δ2H data were appropriate for inferring the geographic region of molt for the majority of birds. There was relatively large interfeather variation in the δ2H values of subadults vs. adults, suggesting that these groups molted at different times and places. The most negative δ2Hf values from birds with known summering grounds exhibited (1) a negative correlation with their summering latitude, and (2) a positive correlation with amount-weighted δ2H values of May–August precipitation at the summer location. These data validate the use of δ2Hf values for inferring the summer locations of Golden Eagles of unknown origin. Likelihood-of-origin maps derived from δ2Hf values revealed that (1) the majority of birds spent the breeding season in central Québec and Labrador, and (2) birds that wintered at southern latitudes, from approximately northern Alabama to southwestern Virginia, migrated about twice the distance of birds that wintered at northern latitudes, from Pennsylvania to New York. We observed a positive relationship between δ2Hf values and the latitude of the wintering location, which, along with the likelihood-of-origin maps, revealed moderate patterns of leapfrog migration and migratory connectivity.
Biodiversity and Conservation | 2015
Adam E. Duerr; Tricia A. Miller; Kerri L Cornell Duerr; Michael Lanzone; Amy Fesnock; Todd E. Katzner
Anthropogenic development has great potential to affect fragile desert environments. Large-scale development of renewable energy infrastructure is planned for many desert ecosystems. Development plans should account for anthropogenic effects to distributions and abundance of rare or sensitive wildlife; however, baseline data on abundance and distribution of such wildlife are often lacking. We surveyed for predatory birds in the Sonoran and Mojave Deserts of southern California, USA, in an area designated for protection under the “Desert Renewable Energy Conservation Plan”, to determine how these birds are distributed across the landscape and how this distribution is affected by existing development. We developed species-specific models of resight probability to adjust estimates of abundance and density of each individual common species. Second, we developed combined-species models of resight probability for common and rare species so that we could make use of sparse data on the latter. We determined that many common species, such as red-tailed hawks, loggerhead shrikes, and especially common ravens, are associated with human development and likely subsidized by human activity. Species-specific and combined-species models of resight probability performed similarly, although the former model type provided higher quality information. Comparing abundance estimates with past surveys in the Mojave Desert suggests numbers of predatory birds associated with human development have increased while other sensitive species not associated with development have decreased. This approach gave us information beyond what we would have collected by focusing either on common or rare species, thus it provides a low-cost framework for others conducting surveys in similar desert environments outside of California.