Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trieu Phat Luu is active.

Publication


Featured researches published by Trieu Phat Luu.


international conference on virtual rehabilitation | 2015

A closed-loop brain computer interface to a virtual reality avatar: Gait adaptation to visual kinematic perturbations

Trieu Phat Luu; Yongtian He; Samuel Brown; Sho Nakagome; Jose L. Contreras-Vidal

The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEC) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system.


international conference of the ieee engineering in medicine and biology society | 2016

Noninvasive EEG correlates of overground and stair walking

Justin A. Brantley; Trieu Phat Luu; Recep A. Ozdemir; Fangshi Zhu; Anna T. Winslow; Helen Huang; Jose L. Contreras-Vidal

Automated walking intention detection remains a challenge in lower-limb neuroprosthetic systems. Here, we assess the feasibility of extracting motor intent from scalp electroencephalography (EEG). First, we evaluated the corticomuscular coherence between central EEG electrodes (C1, Cz, C2) and muscles of the shank and thigh during walking on level ground and stairs. Second, we trained decoders to predict the linear envelope of the surface electromyogram (EMG). We observed significant EEG-led corticomuscular coupling between electrodes and sEMG (tibialis anterior) in the high delta (3-4 Hz) and low theta (4-5 Hz) frequency bands during level walking, indicating efferent signaling from the cortex to peripheral motor neurons. The coherence was increased between EEG and vastus lateralis and tibialis anterior in the delta band (<; 2 Hz) during stair ascent, indicating a task specific modulation in corticomuscular coupling. However, EMG was the leading signal for biceps femoris and gastrocnemius coherence during stair ascent, possibly representing afferent feedback loops from periphery to the motor cortex. Decoder validation showed that EEG signals contained information about the sEMG patterns during over ground walking, however, the accuracy of the predicted sEMG patterns decreased during the stair condition. Overall, these initial findings support the feasibility of integrating sEMG and EEG into a hybrid decoder for volitional control of lower limb neuroprostheses.


Scientific Reports | 2017

Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking

Trieu Phat Luu; Sho Nakagome; Yongtian He; Jose L. Contreras-Vidal

Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users’ gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. This study aims to investigate the changes of cortical involvement in human treadmill walking with and without BCI control of a walking avatar. Source localization revealed significant differences in cortical network activity between walking with and without closed-loop BCI control. Our results showed sustained α/µ suppression in the Posterior Parietal Cortex and Inferior Parietal Lobe, indicating increases of cortical involvement during walking with BCI control. We also observed significant increased activity of the Anterior Cingulate Cortex (ACC) in the low frequency band suggesting the presence of a cortical network involved in error monitoring and motor learning. Additionally, the presence of low γ modulations in the ACC and Superior Temporal Gyrus may associate with increases of voluntary control of human gait. This work is a further step toward the development of a novel training paradigm for improving the efficacy of rehabilitation in a top-down approach.


Medical Devices : Evidence and Research | 2017

Risk management and regulations for lower limb medical exoskeletons: a review.

Yongtian He; David Eguren; Trieu Phat Luu; Jose L. Contreras-Vidal

Gait disability is a major health care problem worldwide. Powered exoskeletons have recently emerged as devices that can enable users with gait disabilities to ambulate in an upright posture, and potentially bring other clinical benefits. In 2014, the US Food and Drug Administration approved marketing of the ReWalk™ Personal Exoskeleton as a class II medical device with special controls. Since then, Indego™ and Ekso™ have also received regulatory approval. With similar trends worldwide, this industry is likely to grow rapidly. On the other hand, the regulatory science of powered exoskeletons is still developing. The type and extent of probable risks of these devices are yet to be understood, and industry standards are yet to be developed. To address this gap, Manufacturer and User Facility Device Experience, Clinicaltrials.gov, and PubMed databases were searched for reports of adverse events and inclusion and exclusion criteria involving the use of lower limb powered exoskeletons. Current inclusion and exclusion criteria, which can determine probable risks, were found to be diverse. Reported adverse events and identified risks of current devices are also wide-ranging. In light of these findings, current regulations, standards, and regulatory procedures for medical device applications in the USA, Europe, and Japan were also compared. There is a need to raise awareness of probable risks associated with the use of powered exoskeletons and to develop adequate countermeasures, standards, and regulations for these human-machine systems. With appropriate risk mitigation strategies, adequate standards, comprehensive reporting of adverse events, and regulatory oversight, powered exoskeletons may one day allow individuals with gait disabilities to safely and independently ambulate.


international conference of the ieee engineering in medicine and biology society | 2016

Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography

Trieu Phat Luu; Yongtian He; Sho Nakagame; Jeffrey Gorges; Kevin Nathan; Jose L. Contreras-Vidal

The feasibility of decoding lower limb kinematics in human treadmill walking from noninvasive electroencephalography (EEG) has been demonstrated with linear Wiener filter. However, nonlinear relationship between neural activities and limb movements may challenge the linear decoders in real-time brain computer interface (BCI) applications. In this study, we propose a nonlinear neural decoder using an Unscented Kalman Filter (UKF) to infer lower limb joint angles from noninvasive scalp EEG signals during human treadmill walking. Our results demonstrate that lower limb joint angles during treadmill walking can be decoded from the fluctuations in the amplitude of slow cortical potentials in the delta band (0.1-3Hz). Overall, the average decoding accuracy were 0.43 ± 0.18 for Pearsons r value and 1.82 ± 3.07 for signal to noise ratio (SNR), and robust to ocular, muscle, or movement artifacts. Moreover, the signal preprocessing scheme and the design of UKF allow the implementation of the proposed EEG-based BCI for real-time applications. This has implications for the development of closed-loop EEG-based BCI systems for gait rehabilitation after stroke.


Journal of Neural Engineering | 2018

Brain–machine interfaces for controlling lower-limb powered robotic systems

Yongtian He; David Eguren; José Maria Azorín; Robert G. Grossman; Trieu Phat Luu; Jose L. Contreras-Vidal

OBJECTIVE Lower-limb, powered robotics systems such as exoskeletons and orthoses have emerged as novel robotic interventions to assist or rehabilitate people with walking disabilities. These devices are generally controlled by certain physical maneuvers, for example pressing buttons or shifting body weight. Although effective, these control schemes are not what humans naturally use. The usability and clinical relevance of these robotics systems could be further enhanced by brain-machine interfaces (BMIs). A number of preliminary studies have been published on this topic, but a systematic understanding of the experimental design, tasks, and performance of BMI-exoskeleton systems for restoration of gait is lacking. APPROACH To address this gap, we applied standard systematic review methodology for a literature search in PubMed and EMBASE databases and identified 11 studies involving BMI-robotics systems. The devices, user population, input and output of the BMIs and robot systems respectively, neural features, decoders, denoising techniques, and system performance were reviewed and compared. MAIN RESULTS Results showed BMIs classifying walk versus stand tasks are the most common. The results also indicate that electroencephalography (EEG) is the only recording method for humans. Performance was not clearly presented in most of the studies. Several challenges were summarized, including EEG denoising, safety, responsiveness and others. SIGNIFICANCE We conclude that lower-body powered exoskeletons with automated gait intention detection based on BMIs open new possibilities in the assistance and rehabilitation fields, although the current performance, clinical benefits and several key challenging issues indicate that additional research and development is required to deploy these systems in the clinic and at home. Moreover, rigorous EEG denoising techniques, suitable performance metrics, consistent trial reporting, and more clinical trials are needed to advance the field.


Scientific Data | 2018

Data Descriptor: A mobile brainbody imaging dataset recorded during treadmill walking with a brain-computer interface

Yongtian He; Trieu Phat Luu; Kevin Nathan; Sho Nakagome; Jose L. Contreras-Vidal

We present a mobile brain-body imaging (MoBI) dataset acquired during treadmill walking in a brain-computer interface (BCI) task. The data were collected from eight healthy subjects, each having three identical trials. Each trial consisted of three conditions: standing, treadmill walking, and treadmill walking with a closed-loop BCI. During the BCI condition, subjects used their brain activity to control a virtual avatar on a screen to walk in real-time. Robust procedures were designed to record lower limb joint angles (bilateral hip, knee, and ankle) using goniometers synchronized with 60-channel scalp electroencephalography (EEG). Additionally, electrooculogram (EOG), EEG electrodes impedance, and digitized EEG channel locations were acquired to aid artifact removal and EEG dipole-source localization. This dataset is unique in that it is the first published MoBI dataset recorded during walking. It is useful in addressing several important open research questions, such as how EEG is coupled with gait cycle during closed-loop BCI, how BCI influences neural activity during walking, and how a BCI decoder may be optimized.


PLOS ONE | 2017

Electrocortical correlates of human level-ground, slope, and stair walking

Trieu Phat Luu; Justin A. Brantley; Sho Nakagome; Fangshi Zhu; Jose L. Contreras-Vidal

This study investigated electrocortical dynamics of human walking across different unconstrained walking conditions (i.e., level ground (LW), ramp ascent (RA), and stair ascent (SA)). Non-invasive active-electrode scalp electroencephalography (EEG) signals were recorded and a systematic EEG processing method was implemented to reduce artifacts. Source localization combined with independent component analysis and k-means clustering revealed the involvement of four clusters in the brain during the walking tasks: Left and Right Occipital Lobe (LOL, ROL), Posterior Parietal Cortex (PPC), and Central Sensorimotor Cortex (SMC). Results showed that the changes of spectral power in the PPC and SMC clusters were associated with the level of motor task demands. Specifically, we observed α and β suppression at the beginning of the gait cycle in both SA and RA walking (relative to LW) in the SMC. Additionally, we observed significant β rebound (synchronization) at the initial swing phase of the gait cycle, which may be indicative of active cortical signaling involved in maintaining the current locomotor state. An increase of low γ band power in this cluster was also found in SA walking. In the PPC, the low γ band power increased with the level of task demands (from LW to RA and SA). Additionally, our results provide evidence that electrocortical amplitude modulations (relative to average gait cycle) are correlated with the level of difficulty in locomotion tasks. Specifically, the modulations in the PPC shifted to higher frequency bands when the subjects walked in RA and SA conditions. Moreover, low γ modulations in the central sensorimotor area were observed in the LW walking and shifted to lower frequency bands in RA and SA walking. These findings extend our understanding of cortical dynamics of human walking at different level of locomotion task demands and reinforces the growing body of literature supporting a shared-control paradigm between spinal and cortical networks during locomotion.


Scientific Data | 2018

Full body mobile brain-body imaging data during unconstrained locomotion on stairs, ramps, and level ground

Justin A. Brantley; Trieu Phat Luu; Sho Nakagome; Fangshi Zhu; Jose L. Contreras-Vidal

Human locomotion is a complex process that requires the integration of central and peripheral nervous signalling. Understanding the brain’s involvement in locomotion is challenging and is traditionally investigated during locomotor imagination or observation. However, stationary imaging methods lack the ability to infer information about the peripheral and central signalling during actual task execution. In this report, we present a dataset containing simultaneously recorded electroencephalography (EEG), lower-limb electromyography (EMG), and full body motion capture recorded from ten able-bodied individuals. The subjects completed an average of twenty trials on an experimental gait course containing level-ground, ramps, and stairs. We recorded 60-channel EEG from the scalp and 4-channel EOG from the face and temples. Surface EMG was recorded from six muscle sites bilaterally on the thigh and shank. The motion capture system consisted of seventeen wireless IMUs, allowing for unconstrained ambulation in the experimental space. In this report, we present the rationale for collecting these data, a detailed explanation of the experimental setup, and a brief validation of the data quality.


systems, man and cybernetics | 2017

Cortical features of locomotion-mode transitions via non-invasive EEG

Trieu Phat Luu; Justin A. Brantley; Fangshi Zhu; Jose L. Contreras-Vidal

This study investigates the neural features of locomotion mode transitions (i.e., level-ground walking to stair ascent) from non-invasive electroencephalography (EEG) signals. A systematic EEG processing method was implemented to reduce artifacts. Source localization using independent component analysis and k-mean clustering algorithm revealed the involvement of four clusters in the brain (Left and Right Occipital Lobe, Posterior Parietal Cortex, and Motor Cortex) during the walking tasks. Our results show significant differences in spectral power in the Occipital cluster between level-ground (LW) and stair (SA) walking. Additionally, significant increases in spectral power were detected up to 1.4 second before the critical transition time (LW to SA). The findings have implications for developing noninvasive lower-limb neuroprostheses that predict, rather than respond to, the user gait intentions. This work is a further step toward the development of a multimodal Neural-machine Interface (NMI) that fuses EEG and electromyography (EMG) signals for intuitive and flexible control of power prosthetic legs.

Collaboration


Dive into the Trieu Phat Luu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge