Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trine Prescott is active.

Publication


Featured researches published by Trine Prescott.


Nature Genetics | 2009

Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans

Marielle Alders; Benjamin M. Hogan; Evisa Gjini; Faranak Salehi; Lihadh Al-Gazali; Eric A.M. Hennekam; Eva E. Holmberg; Marcel Mannens; M. F. Mulder; G. Johan A. Offerhaus; Trine Prescott; Eelco J. Schroor; Joke B. G. M. Verheij; Merlijn Witte; Petra J. G. Zwijnenburg; Miikka Vikkula; Stefan Schulte-Merker; Raoul C. M. Hennekam

Lymphedema, lymphangiectasias, mental retardation and unusual facial characteristics define the autosomal recessive Hennekam syndrome. Homozygosity mapping identified a critical chromosomal region containing CCBE1, the human ortholog of a gene essential for lymphangiogenesis in zebrafish. Homozygous and compound heterozygous mutations in seven subjects paired with functional analysis in a zebrafish model identify CCBE1 as one of few genes causing primary generalized lymph-vessel dysplasia in humans.


American Journal of Human Genetics | 2012

Disruption of an EHMT1-Associated Chromatin-Modification Module Causes Intellectual Disability

Tjitske Kleefstra; Jamie M. Kramer; Kornelia Neveling; Marjolein H. Willemsen; Tom S. Koemans; Lisenka E.L.M. Vissers; Willemijn Wissink-Lindhout; Michaela Fenckova; Willem M.R. van den Akker; Nael Nadif Kasri; Willy M. Nillesen; Trine Prescott; Robin D. Clark; Koenraad Devriendt; Jeroen van Reeuwijk; Arjan P.M. de Brouwer; Christian Gilissen; Huiqing Zhou; Han G. Brunner; Joris A. Veltman; Annette Schenck; Hans van Bokhoven

Intellectual disability (ID) disorders are genetically and phenotypically highly heterogeneous and present a major challenge in clinical genetics and medicine. Although many genes involved in ID have been identified, the etiology is unknown in most affected individuals. Moreover, the function of most genes associated with ID remains poorly characterized. Evidence is accumulating that the control of gene transcription through epigenetic modification of chromatin structure in neurons has an important role in cognitive processes and in the etiology of ID. However, our understanding of the key molecular players and mechanisms in this process is highly fragmentary. Here, we identify a chromatin-modification module that underlies a recognizable form of ID, the Kleefstra syndrome phenotypic spectrum (KSS). In a cohort of KSS individuals without mutations in EHMT1 (the only gene known to be disrupted in KSS until now), we identified de novo mutations in four genes, MBD5, MLL3, SMARCB1, and NR1I3, all of which encode epigenetic regulators. Using Drosophila, we demonstrate that MBD5, MLL3, and NR1I3 cooperate with EHMT1, whereas SMARCB1 is known to directly interact with MLL3. We propose a highly conserved epigenetic network that underlies cognition in health and disease. This network should allow the design of strategies to treat the growing group of ID pathologies that are caused by epigenetic defects.


The Journal of Allergy and Clinical Immunology | 2017

Primary immunodeficiency diseases: Genomic approaches delineate heterogeneous Mendelian disorders

Asbjørg Stray-Pedersen; Hanne Sørmo Sorte; Pubudu Saneth Samarakoon; Tomasz Gambin; Ivan K. Chinn; Zeynep Coban Akdemir; Hans Christian Erichsen; Lisa R. Forbes; Shen Gu; Bo Yuan; Shalini N. Jhangiani; Donna M. Muzny; Olaug K. Rødningen; Ying Sheng; Sarah K. Nicholas; Lenora M. Noroski; Filiz O. Seeborg; Carla M. Davis; Debra L. Canter; Emily M. Mace; Timothy J. Vece; Carl E. Allen; Harshal Abhyankar; Philip M. Boone; Christine R. Beck; Wojciech Wiszniewski; Børre Fevang; Pål Aukrust; Geir E. Tjønnfjord; Tobias Gedde-Dahl

Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions. Objective: We sought to investigate the ability of whole‐exome screening methods to detect disease‐causing variants in patients with PIDDs. Methods: Patients with PIDDs from 278 families from 22 countries were investigated by using whole‐exome sequencing. Computational copy number variant (CNV) prediction pipelines and an exome‐tiling chromosomal microarray were also applied to identify intragenic CNVs. Analytic approaches initially focused on 475 known or candidate PIDD genes but were nonexclusive and further tailored based on clinical data, family history, and immunophenotyping. Results: A likely molecular diagnosis was achieved in 110 (40%) unrelated probands. Clinical diagnosis was revised in about half (60/110) and management was directly altered in nearly a quarter (26/110) of families based on molecular findings. Twelve PIDD‐causing CNVs were detected, including 7 smaller than 30 Kb that would not have been detected with conventional diagnostic CNV arrays. Conclusion: This high‐throughput genomic approach enabled detection of disease‐related variants in unexpected genes; permitted detection of low‐grade constitutional, somatic, and revertant mosaicism; and provided evidence of a mutational burden in mixed PIDD immunophenotypes.


European Journal of Human Genetics | 2011

Novel mutations affecting LRP5 splicing in patients with osteoporosis-pseudoglioma syndrome (OPPG)

Christine M. Laine; Boi-Dinh Chung; Miki Susic; Trine Prescott; Oliver Semler; Torunn Fiskerstrand; Patrizia d'Eufemia; Marco Castori; Minna Pekkinen; Etienne Sochett; William G. Cole; Christian Netzer; Outi Mäkitie

Osteoporosis-pseudoglioma sydrome (OPPG) is an autosomal recessive disorder with early-onset severe osteoporosis and blindness, caused by biallelic loss-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene. Heterozygous carriers exhibit a milder bone phenotype. Only a few splice mutations in LRP5 have been published. We present clinical and genetic data for four patients with novel LRP5 mutations, three of which affect splicing. Patients were evaluated clinically and by radiography and bone densitometry. Genetic screening of LRP5 was performed on the basis of the clinical diagnosis of OPPG. Splice aberrances were confirmed by cDNA sequencing or exon trapping. The effect of one splice mutation on LRP5 protein function was studied. A novel splice-site mutation c.1584+4A>T abolished the donor splice site of exon 7 and activated a cryptic splice site, which led to an in-frame insertion of 21 amino acids (p.E528_V529ins21). Functional studies revealed severely impaired signal transduction presumably caused by defective intracellular transport of the mutated receptor. Exon trapping was used on two samples to confirm that splice-site mutations c.4112-2A>G and c.1015+1G>T caused splicing-out of exons 20 and 5, respectively. One patient carried a homozygous deletion of exon 4 causing the loss of exons 4 and 5, as demonstrated by cDNA analysis. Our results broaden the spectrum of mutations in LRP5 and provide the first functional data on splice aberrations.


European Journal of Human Genetics | 2009

An 8.9 Mb 19p13 duplication associated with precocious puberty and a sporadic 3.9 Mb 2q23.3q24.1 deletion containing NR4A2 in mentally retarded members of a family with an intrachromosomal 19p-into-19q between-arm insertion

Helle Lybæk; Karen Helene Ørstavik; Trine Prescott; Randi Hovland; Harald Breilid; Christine Stansberg; Vidar M. Steen; Gunnar Houge

In a 2 and a half-year-old girl with onset of puberty before the age of 5 months, short stature, hand anomalies and severe mental retardation, an 8.9 Mb interstitial 19p13 duplication containing 215 predicted genes was detected. It was initially assumed that the duplication involved the kisspeptin receptor gene, GPR54, known to stimulate induction of puberty, but more refined duplication mapping excluded this possibility. In an attempt to further understand the genotype–phenotype correlation, global gene expression was measured in skin fibroblasts. The overall expression pattern was quite similar to controls, and only about 25% of the duplicated genes had an expression level that was increased by more than 1.3-fold, with no obvious changes that could explain the precocious puberty. The probands mother carried a balanced between-arm insertion of the duplicated segment that resembled a pericentric inversion. The same insertion was found in several other family members, including one who had lost a daughter with severe mental retardation and menarche at the age of 10 years. Another close relative was severely mentally retarded, but neither dysmorphic nor microcephalic. His phenotype was initially ascribed to a presumed cryptic chromosome 19 imbalance caused by the 19p-into19q insertion, but subsequent array-CGH detected a 3.9-Mb deletion of 2q23.3q24.1. This novel microdeletion involves seven genes, of which FMNL2, a suggested regulator of Rho-GTPases, and NR4A2, an essential gene for differentiation of dopaminergic neurons, may be critical genes for the proposed 2q23q24 microdeletion syndrome.


European Journal of Medical Genetics | 2008

1.4Mb recurrent 22q11.2 distal deletion syndrome, two new cases expand the phenotype.

Olaug K. Rødningen; Trine Prescott; Ann-Sofie Eriksson; Oddveig Røsby

We report two new patients with the 1.4Mb recurrent 22q11.2 distal deletion syndrome. Features common to both children, as well as to several of the previously reported cases, include normal palate, smooth philtrum, hypoplastic alae nasi and delayed development. Both children are small but not growth retarded, and are microcephalic. Their developmental delay is global and most pronounced for language acquisition. One child has unilateral sensorineural hearing loss and encopresis, and the other child has treatment-responsive nocturnal epileptogenic activity. These two new cases confirm the recurrent nature of the deletion and help to further delineate the phenotype.


American Journal of Human Genetics | 2016

A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect

Meriel McEntagart; Kathleen A. Williamson; Jacqueline K. Rainger; Ann P. Wheeler; Anne Seawright; Elfride De Baere; Hannah Verdin; L. Therese Bergendahl; Alan J. Quigley; Joe Rainger; Abhijit Dixit; Ajoy Sarkar; Eduardo López Laso; Rocío Sánchez-Carpintero; Jesus Barrio; Pierre Bitoun; Trine Prescott; Ruth Riise; Shane McKee; Jackie Cook; Lisa McKie; Berten Ceulemans; Françoise Meire; I. Karen Temple; Fabienne Prieur; Jonathan Williams; Penny Clouston; Andrea H. Németh; Siddharth Banka; Hemant Bengani

Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions.


Human Molecular Genetics | 2013

Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1

Anne Slavotinek; Pavni Mehrotra; Irina Nazarenko; Paul Ling-Fung Tang; Richard Lao; Don Cameron; Ben Li; Catherine Chu; Chris Chou; Ann L Marqueling; Mani Yahyavi; Kelly M. Cordoro; Ilona J. Frieden; Tom Glaser; Trine Prescott; Marie-Anne Morren; Koenraad Devriendt; Pui-Yan Kwok; Martin Petkovich; Robert J. Desnick

Focal facial dermal dysplasia (FFDD) Type IV is a rare syndrome characterized by facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. To identify the causative gene(s), exome sequencing was performed in a family with two affected siblings. Assuming autosomal recessive inheritance, two novel sequence variants were identified in both siblings in CYP26C1-a duplication of seven base pairs, which was maternally inherited, c.844_851dupCCATGCA, predicting p.Glu284fsX128 and a missense mutation, c.1433G>A, predicting p.Arg478His, that was paternally inherited. The duplication predicted a frameshift mutation that led to a premature stop codon and premature chain termination, whereas the missense mutation was not functional based on its in vitro expression in mammalian cells. The FFDD skin lesions arise along the sites of fusion of the maxillary and mandibular prominences early in facial development, and Cyp26c1 was expressed exactly along the fusion line for these facial prominences in the first branchial arch in mice. Sequencing of four additional, unrelated Type IV FFDD patients and eight Type II or III TWIST2-negative FFDD patients revealed that three of the Type IV patients were homozygous for the duplication, whereas none of the Type II or III patients had CYP26C1 mutations. The seven base pairs duplication was present in 0.3% of healthy controls and 0.3% of patients with other birth defects. These findings suggest that the phenotypic manifestations of FFDD Type IV can be non-penetrant or underascertained. Thus, FFDD Type IV results from the loss of function mutations in CYP26C1.


Clinical Dysmorphology | 2009

Two brothers with a microduplication including the MECP2 gene: rapid head growth in infancy and resolution of susceptibility to infection.

Trine Prescott; Olaug K. Rødningen; Alf Bjørnstad; Asbjørg Stray-Pedersen

Microduplications in chromosome Xq28, which include the methyl-CPG binding protein (MECP2) gene, cause severe X-linked mental retardation. Serious recurrent infections are a feature of this condition. Affected males are micro or normocephalic. We report two normocephalic brothers with an approximately 0.5 Mb duplication which includes MECP2 who had rapid head growth in infancy. The younger boy had chronic constipation until the age of 3 years. For both boys, the susceptibility to infection subsided in the second year of life. Whether or not rapid head growth in infancy and/or constipation are frequent features of the phenotype remains to be seen as more patients are described. Susceptibility to infection can remit after early childhood and could theoretically be related to overexpression of the interleukin 1 receptor-associated kinase IRAK1 gene.


PLOS ONE | 2016

Genetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome

Morad Ansari; Jacqueline K. Rainger; Isabel M. Hanson; Kathleen A. Williamson; Freddie H. Sharkey; Louise Harewood; Angela Sandilands; Jill Clayton-Smith; Hélène Dollfus; Pierre Bitoun; Françoise Meire; Judy Fantes; Brunella Franco; Birgit Lorenz; David Taylor; Fiona Stewart; Colin E. Willoughby; Meriel McEntagart; Peng Tee Khaw; Carol L. Clericuzio; Lionel Van Maldergem; Denise Williams; Ruth Newbury-Ecob; Elias I. Traboulsi; Eduardo Silva; Mukhlis M. Madlom; David Goudie; Brian W. Fleck; Dagmar Wieczorek; Juergen Kohlhase

We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic hybridization identified six whole gene deletions: four encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regulatory effects were identified: five that were 3ʹ (telomeric) to PAX6 and one within a gene desert 5ʹ (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint. Disruption of PHF21A has previously been implicated in the causation of intellectual disability (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals (12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.

Collaboration


Dive into the Trine Prescott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunnar Houge

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koenraad Devriendt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

James R. Lupski

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge