Trinidad Méndez-Morales
University of Santiago de Compostela
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trinidad Méndez-Morales.
Journal of Physical Chemistry B | 2011
Trinidad Méndez-Morales; Jesús Carrete; Oscar Cabeza; L. J. Gallego; Luis M. Varela
We have performed extensive molecular dynamic simulations to analyze the influence of cation and anion natures, and of water concentration, on the structure and dynamics of water-1-alkyl-3-methylimidazolium ionic liquid mixtures. The dependence on water concentration of the radial distribution functions, coordination numbers, and hydrogen bonding degree between the different species has been systematically analyzed for different lengths of the cation alkyl chain (alkyl = ethyl, butyl, hexyl, and octyl) and several counterions. These include two halogens of different sizes and positions in Hoffmeister series, Cl(-) and Br(-), and the highly hydrophobic inorganic anion PF(6)(-) throughout its whole solubility regime. The formation of water clusters in the mixture has been verified, and the influences of both anion hydrophobicity and cation chain length on the structure and size of these clusters have been analyzed. The water cluster size is shown to be relatively independent of the cation chain length, but strongly dependent on the hydrophobicity of the anion, which also determines critically the network formation of water and therefore the miscibility of the ionic liquid. The greater influence of the anion relative to the cation one is seen to be reflected in all the analyzed physical properties. Finally, single-particle dynamics in IL-water mixtures is considered, obtaining the self-diffusion coefficients and the velocity autocorrelation functions of water molecules in the mixture, and analyzing the effect of cation, anion, and water concentration on the duration of the ballistic regime and on the time of transition to the diffusive regime. Complex non-Markovian behavior was detected at intermediate times within an interval progressively shorter as water concentration increases.
Journal of Physical Chemistry B | 2013
Trinidad Méndez-Morales; Jesús Carrete; Silvia Bouzón-Capelo; Martín Pérez-Rodríguez; Oscar Cabeza; L. J. Gallego; Luis M. Varela
Structural and dynamical properties of room-temperature ionic liquids containing the cation 1-butyl-3-methylimidazolium ([BMIM](+)) and three different anions (hexafluorophosphate, [PF6](-), tetrafluoroborate, [BF4](-), and bis(trifluoromethylsulfonyl)imide, [NTf2](-)) doped with several molar fractions of lithium salts with a common anion at 298.15 K and 1 atm were investigated by means of molecular dynamics simulations. The effect of the size of the salt cation was also analyzed by comparing these results with those for mixtures of [BMIM][PF6] with NaPF6. Lithium/sodium solvation and ionic mobilities were analyzed via the study of radial distribution functions, coordination numbers, cage autocorrelation functions, mean-square displacements (including the analysis of both ballistic and diffusive regimes), self-diffusion coefficients of all the ionic species, velocity and current autocorrelation functions, and ionic conductivity in all the ionic liquid/salt systems. We found that lithium and sodium cations are strongly coordinated in two different positions with the anion present in the mixture. Moreover, [Li](+) and [Na](+) cations were found to form bonded-like, long-lived aggregates with the anions in their first solvation shell, which act as very stable kinetic entities within which a marked rattling motion of salt ions takes place. With very long MD simulation runs, this phenomenon is proved to be on the basis of the decrease of self-diffusion coefficients and ionic conductivities previously reported in experimental and computational results.
Journal of Physical Chemistry B | 2014
Trinidad Méndez-Morales; Jesús Carrete; Oscar Cabeza; Olga Russina; Alessandro Triolo; L. J. Gallego; Luis M. Varela
The structure of solutions of lithium nitrate in a protic ionic liquid with a common anion, ethylammonium nitrate, at room temperature is investigated by means of molecular dynamics simulations. Several structural properties, such as density, radial distribution functions, hydrogen bonds, spatial distribution functions, and coordination numbers, are analyzed in order to get a picture of the solvation of lithium cations in this hydrogen-bonded, amphiphilically nanostructured environment. The results reveal that the ionic liquid mainly retains its structure upon salt addition, the interaction between the ammonium group of the cation and the nitrate anion being only slightly perturbed by the addition of the salt. Lithium cations are solvated by embedding them in the polar nanodomains of the solution formed by the anions, where they coordinate with the latter in a solid-like fashion reminiscent of a pseudolattice structure. Furthermore, it is shown that the average coordination number of [Li](+) with the anions is 4, nitrate coordinating [Li](+) in both monodentate and bidentate ways, and that in the second coordination layer both ethylammonium cations and other lithiums are also found. Additionally, the rattling motion of lithium ions inside the cages formed by their neighboring anions, indicative of the so-called caging effect, is confirmed by the analysis of the [Li](+) velocity autocorrelation functions. The overall picture indicates that the solvation of [Li](+) cations in this amphiphilically nanostructured environment takes place by means of a sort of inhomogeneous nanostructural solvation, which we could refer to as nanostructured solvation, and which could be a universal solvation mechanism in ionic liquids.
Journal of Chemical Physics | 2014
Borja Docampo-Álvarez; Víctor Gómez-González; Trinidad Méndez-Morales; Jesús Carrete; Julio R. Rodríguez; Oscar Cabeza; L. J. Gallego; Luis M. Varela
In this work, the effect of molecular cosolvents (water, ethanol, and methanol) on the structure of mixtures of these compounds with a protic ionic liquid (ethylammonium nitrate) is analyzed by means of classical molecular dynamics simulations. Included are as-yet-unreported measurements of the densities of these mixtures, used to test our parameterized potential. The evolution of the structure of the mixtures throughout the concentration range is reported by means of the calculation of coordination numbers and the fraction of hydrogen bonds in the system, together with radial and spatial distribution functions for the various molecular species and molecular ions in the mixture. The overall picture indicates a homogeneous mixing process of added cosolvent molecules, which progressively accommodate themselves in the network of hydrogen bonds of the protic ionic liquid, contrarily to what has been reported for their aprotic counterparts. Moreover, no water clustering similar to that in aprotic mixtures is detected in protic aqueous mixtures, but a somehow abrupt replacing of [NO3](-) anions in the first hydration shell of the polar heads of the ionic liquid cations is registered around 60% water molar concentration. The spatial distribution functions of water and alcohols differ in the coordination type, since water coordinates with [NO3](-) in a bidentate fashion in the equatorial plane of the anion, while alcohols do it in a monodentate fashion, competing for the oxygen atoms of the anion. Finally, the collision times of the different cosolvent molecules are also reported by calculating their velocity autocorrelation functions, and a caging effect is observed for water molecules but not in alcohol mixtures.
Journal of Physical Chemistry B | 2011
Trinidad Méndez-Morales; Jesús Carrete; Oscar Cabeza; L. J. Gallego; Luis M. Varela
In this work, extensive molecular dynamics simulations of mixtures of alcohols of several chain lengths (methanol and ethanol) with the ionic liquids (ILs) composed of the cation 1-hexyl-3-methylimidazolium and several anions of different hydrophobicity degrees (Cl(-), BF(4)(-), PF(6)(-)) are reported. We analyze the influence of the nature of the anion, the length of the molecular chain of the alcohol, and the alcohol concentration on the thermodynamic and structural properties of the mixtures. Densities, excess molar volumes, total and partial radial distribution functions, coordination numbers, and hydrogen bond degrees are reported and analyzed for mixtures of the ILs with methanol and ethanol. The aggregation process is shown to be highly dependent on the nature of the anion and the size of the alcohol, since alcohol molecules tend to interact predominantly with the anionic part of the IL, especially in mixtures of the halogenated IL with methanol. Particularly, our results suggest that the formation of an apolar network similar to that previously reported in mixtures of ILs with water does not take place in mixtures with alcohol when the chloride anion is present, the alcohol molecules being instead homogeneously distributed in the polar network of IL. Moreover, the alcohol clusters formed in mixtures of [HMIM][PF(6)] with alcohol were found to have a smaller size than in mixtures with water. Additionally, we provide a semiquantitative analysis of the dependence of the hydrogen bonding degree of the mixtures on the alcohol concentration.
Journal of Physical Chemistry B | 2011
B. Fernandez-Castro; Trinidad Méndez-Morales; Jesús Carrete; E. Fazer; Oscar Cabeza; Julio R. Rodríguez; Mireille Turmine; Luis M. Varela
The existence and properties of mesoscopic self-assembly structures formed by surfactants in protic ionic liquid solutions are reported. Micellar aggregates of n-alkyltrimethylammonium (n = 10, 12, 14, 16) chlorides and bromides and of n-alkylpyridinium (n = 12, 16) chlorides in ethylammonium nitrate and propylammonium nitrate were observed by means of several experimental techniques, including surface tension, transmission electron micrography, dynamic light scattering, and potentiometry using surfactant-selective electrodes. The effect of the alkyl chain length of both solute and solvent molecules on the critical micelle concentration is discussed, and a Stauff-Klevens law is seen to apply to surfactant solutions in both protic ionic liquids. The counterion role is also a matter of study in the case of alkyltrimethylammonium-based surfactants, and the presently reported evidence suggests that the place of the surfactant counterion in the Hoffmeisters series could determine its effect on micellization in IL solution. The size distribution of the aggregates is also analyzed together with the Gibbs free energies of micellization and the minimum surface area per monomer in all of the studied cases. All of the hereby reported evidence suggests that the negative entropic contribution arising from the release of the solvent layer upon micellization is also the driving force of conventional surfactant self-association in protic ionic liquids.
Journal of Physical Chemistry B | 2011
Trinidad Méndez-Morales; Jesús Carrete; M. Garcia; Oscar Cabeza; L. J. Gallego; Luis M. Varela
In this work, extensive molecular dynamics simulations of the dynamics of mixtures of ionic liquids (ILs) composed of the cation 1-hexyl-3-methylimidazolium and several anions of different hydrophobicity degrees (Cl(-), BF(4)(-), PF(6)(-)) with alcohols of different chain lengths (methanol and ethanol) are reported. We evaluated the influence of the nature of the anion, the length of the molecular chain of the alcohol, and the alcohol concentration on some dynamical properties of the mixtures, such as self-diffusion coefficients of all the species, mean square displacements (with an analysis of both ballistic and diffusive regimes), and velocity autocorrelation functions of alcohol molecules. The diffusivity of the mixtures was found to be highly dependent on the nature of the anion since the interaction between chloride and alcohols is greater than that with fluorinated anions and leads to slower dynamics. Additionally, our results show that self-diffusion coefficients increase with alcohol concentration. On the other hand, a subdiffusive regime over thousands of picoseconds was detected at intermediate times through analysis of the center-of-mass mean square displacements of alcohol molecules, a region that becomes narrower as alcohol concentration increases. Finally, the study of the role of the anion and of solvent concentration on velocity autocorrelation functions reflects an increase in mean collision times as the amount of alcohol increases until the value of pure alcohols is reached. These collision times are smaller in mixtures with halogenated ILs.
Journal of Physical Chemistry B | 2012
Jesús Carrete; Trinidad Méndez-Morales; Oscar Cabeza; R. M. Lynden-Bell; L. J. Gallego; Luis M. Varela
In this work, we used molecular dynamics simulations to analyze in detail the spatial distributions of the different constituents in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with three polar molecular species: water and two alcohols of different chain lengths (methanol and ethanol). In particular, we report results regarding the influence of the chosen species and its concentration on the formation of ionic and molecular clusters over the whole miscibility range, as well as on the angular distribution of polar molecules around the anion and the cation in these systems. Both analyses showed that addition of a molecular species breaks down the polar network of the pure ionic liquid in clusters whose mean size decreases progressively as more molecules are added. At very high concentrations of the molecular species, the ions are found to be isolated in mixtures with water and methanol, but they tend to form pairs in ethanol. In mixtures with water we identified large clusters that form a water network at very high water concentrations, while at low water concentrations polar molecules tend to form smaller aggregates. In contrast, in mixtures with alkanols there is no evidence of the formation of large alcohol clusters at any concentration. Spatial order in alcohol was also studied by means of the Kirkwood G factor, reaching the conclusion that the angular correlations which appear in pure alcohols due to dipole interactions are destroyed by the ionic liquid, even when present only in tiny amounts.
Journal of Physics: Condensed Matter | 2016
Borja Docampo-Álvarez; Gomez-Gonzalez; H Montes-Campos; Jm Otero-Mato; Trinidad Méndez-Morales; Oscar Cabeza; L. J. Gallego; R. M. Lynden-Bell; Vladislav Ivaništšev; Mikhail V. Fedorov; Luis M. Varela
This work describes the behaviour of water molecules in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid under nanoconfinement, between graphene sheets. By means of molecular dynamics simulations, the adsorption of water molecules at the graphene surface is studied. A depletion of water molecules in the vicinity of the neutral and negatively charged graphene surfaces, and their adsorption at the positively charged surface are observed in line with the preferential hydration of the ionic liquid anions. The findings are appropriately described using a two-level statistical model. The confinement effect on the structure and dynamics of the mixtures is thoroughly analyzed using the density and the potential of mean force profiles, as well as by the vibrational densities of the states of water molecules near the graphene surface. The orientation of water molecules and the water-induced structural transitions in the layer closest to the graphene surface are also discussed.
Physical Chemistry Chemical Physics | 2016
Vladislav Ivaništšev; Trinidad Méndez-Morales; R. M. Lynden-Bell; Oscar Cabeza; L. J. Gallego; Luis M. Varela; Maxim V. Fedorov
In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.