Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trinity L. Hamilton is active.

Publication


Featured researches published by Trinity L. Hamilton.


The ISME Journal | 2013

Molecular evidence for an active endogenous microbiome beneath glacial ice.

Trinity L. Hamilton; John W. Peters; Mark L. Skidmore; Eric S. Boyd

Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth’s land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth’s past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.


Applied and Environmental Microbiology | 2011

Diversity, Abundance, and Potential Activity of Nitrifying and Nitrate-Reducing Microbial Assemblages in a Subglacial Ecosystem

Eric S. Boyd; Rachel K. Lange; Andrew Mitchell; Jeff R. Havig; Trinity L. Hamilton; Melissa J. Lafrenière; Everett L. Shock; John W. Peters; Mark L. Skidmore

ABSTRACT Subglacial sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada, were shown to harbor diverse assemblages of potential nitrifiers, nitrate reducers, and diazotrophs, as assessed by amoA, narG, and nifH gene biomarker diversity. Although archaeal amoA genes were detected, they were less abundant and less diverse than bacterial amoA, suggesting that bacteria are the predominant nitrifiers in RG sediments. Maximum nitrification and nitrate reduction rates in microcosms incubated at 4°C were 280 and 18.5 nmol of N per g of dry weight sediment per day, respectively, indicating the potential for these processes to occur in situ. Geochemical analyses of subglacial sediment pore waters and bulk subglacial meltwaters revealed low concentrations of inorganic and organic nitrogen compounds. These data, when coupled with a C/N atomic ratio of dissolved organic matter in subglacial pore waters of ∼210, indicate that the sediment communities are N limited. This may reflect the combined biological activities of organic N mineralization, nitrification, and nitrate reduction. Despite evidence of N limitation and the detection of nifH, we were unable to detect biological nitrogen fixation activity in subglacial sediments. Collectively, the results presented here suggest a role for nitrification and nitrate reduction in sustaining microbial life in subglacial environments. Considering that ice currently covers 11% of the terrestrial landmass and has covered significantly greater portions of Earth at times in the past, the demonstration of nitrification and nitrate reduction in subglacial environments furthers our understanding of the potential for these environments to contribute to global biogeochemical cycles on glacial-interglacial timescales.


Geobiology | 2011

A late methanogen origin for molybdenum-dependent nitrogenase.

Eric S. Boyd; Ariel D. Anbar; Scott R. Miller; Trinity L. Hamilton; Matt Lavin; John W. Peters

Mounting evidence indicates the presence of a near complete biological nitrogen cycle in redox-stratified oceans during the late Archean to early Proterozoic (c. 2.5-2.0 Ga). It has been suggested that the iron (Fe)- or vanadium (V)-dependent nitrogenase rather than molybdenum (Mo)-dependent form was responsible for dinitrogen fixation during this time because oceans were depleted in Mo and rich in Fe. We evaluated this hypothesis by examining the phylogenetic relationships of proteins that are required for the biosynthesis of the active site cofactor of Mo-nitrogenase in relation to structural proteins required for Fe-, V- and Mo-nitrogenase. The results are highly suggestive that among extant nitrogen-fixing organisms for which genomic information exists, Mo-nitrogenase is unlikely to have been associated with the Last Universal Common Ancestor. Rather, the origin of Mo-nitrogenase can be traced to an ancestor of the anaerobic and hydrogenotrophic methanogens with acquisition in the bacterial domain via lateral gene transfer involving an anaerobic member of the Firmicutes. A comparison of substitution rates estimated for proteins required for the biosynthesis of the nitrogenase active site cofactor and for a set of paralogous proteins required for the biosynthesis of bacteriochlorophyll suggests that Nif emerged from a nitrogenase-like ancestor approximately 1.5-2.2 Ga. An origin and ensuing proliferation of Mo-nitrogenase under anoxic conditions would likely have occurred in an environment where anaerobic methanogens and Firmicutes coexisted and where Mo was at least episodically available, such as in a redox-stratified Proterozoic ocean basin.


Biochemistry | 2008

Crystal Structure of the L Protein of Rhodobacter sphaeroides Light-Independent Protochlorophyllide Reductase with MgADP Bound : A Homologue of the Nitrogenase Fe Protein

Ranjana Sarma; Brett M. Barney; Trinity L. Hamilton; Alma Jones; Lance C. Seefeldt; John W. Peters

The L protein (BchL) of the dark-operative protochlorophyllide reductase (DPOR) from Rhodobacter sphaeroides has been purified from an Azotobacter vinelandii expression system; its interaction with nucleotides has been examined, and the X-ray structure of the protein has been determined with bound MgADP to 1.6 A resolution. DPOR catalyzes the reduction of protochlorophyllide to chlorophyllide, a reaction critical to the biosynthesis of bacteriochlorophylls. The DPOR holoenzyme is comprised of two component proteins, the dimeric BchL protein and the heterotetrameric BchN/BchB protein. The DPOR component proteins share significant overall similarities with the nitrogenase Fe protein (NifH) and the MoFe (NifDK) protein, the enzyme system responsible for reduction of dinitrogen to ammonia. Here, BchL was expressed in A. vinelandii and purified to homogeneity using an engineered polyhistidine tag. The purified, recombinant BchL was found to contain 3.6 mol of Fe/mol of BchL homodimer, consistent with the presence of a [4Fe-4S] cluster and analogous to the [4Fe-4S] cluster present in the Fe protein. The MgATP- and MgADP-induced conformational changes in BchL were examined by an Fe chelation assay and found to be distinctly different from the nucleotide-stimulated Fe release observed for the Fe protein. The recombinant BchL was crystallized with bound MgADP, and the structure was determined to 1.6 A resolution. BchL is found to share overall structural similarity with the nitrogenase Fe protein, including the subunit bridging [4Fe-4S] cluster and nucleotide binding sites. Despite the high level of structural similarity, however, BchL is found to be incapable of substituting for the Fe protein in a nitrogenase substrate reduction assay. The newly determined structure of BchL and its comparison to its close homologue, the nitrogenase Fe protein, provide the basis for understanding how these highly related proteins can discriminate between their respective functions in microbial systems where each must function simultaneously.


The ISME Journal | 2010

(FeFe)-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism

Eric S. Boyd; Trinity L. Hamilton; John R. Spear; Matt Lavin; John W. Peters

Hydrogen (H2) has an important role in the anaerobic degradation of organic carbon and is the basis for many syntrophic interactions that commonly occur in microbial communities. Little is known, however, with regard to the biotic and/or abiotic factors that control the distribution and phylogenetic diversity of organisms which produce H2 in microbial communities. In this study, we examined the [FeFe]-hydrogenase gene (hydA) as a proxy for fermentative bacterial H2 production along physical and chemical gradients in various geothermal springs in Yellowstone National Park (YNP), WY, USA. The distribution of hydA in YNP geothermal springs was constrained by pH to environments co-inhabited by oxygenic phototrophs and to environments predicted to have low inputs of abiotic H2. The individual HydA asssemblages from YNP springs were more closely related when compared with randomly assembled communities, which suggests ecological filtering. Model selection approaches revealed that geographic distance was the best explanatory variable to predict the phylogenetic relatedness of HydA communities. This evinces the dispersal limitation imposed by the geothermal spring environment on HydA phylogenetic diversity even at small spatial scales. pH differences between sites is the second highest ranked explanatory variable of HydA phylogenetic relatedness, which suggests that the ecology related to pH imposes strong phylogenetic niche conservatism. Collectively, these results indicate that pH has imposed strong niche conservatism on fermentative bacteria and that, within a narrow pH realm, YNP springs are dispersal limited with respect to fermentative bacterial communities.


Frontiers in Microbiology | 2011

An alternative path for the evolution of biological nitrogen fixation

Eric S. Boyd; Trinity L. Hamilton; John W. Peters

Nitrogenase catalyzed nitrogen fixation is the process by which life converts dinitrogen gas into fixed nitrogen in the form of bioavailable ammonia. The most common form of nitrogenase today requires a complex metal cluster containing molybdenum (Mo), although alternative forms exist which contain vanadium (V) or only iron (Fe). It has been suggested that Mo-independent forms of nitrogenase (V and Fe) were responsible for N2 fixation on early Earth because oceans were Mo-depleted and Fe-rich. Phylogenetic- and structure-based examinations of multiple nitrogenase proteins suggest that such an evolutionary path is unlikely. Rather, our results indicate an evolutionary path whereby Mo-dependent nitrogenase emerged within the methanogenic archaea and then gave rise to the alternative forms suggesting that they arose later, perhaps in response to local Mo limitation. Structural inferences of nitrogenase proteins and related paralogs suggest that the ancestor of all nitrogenases had an open cavity capable of binding metal clusters which conferred reactivity. The evolution of the nitrogenase ancestor and its associated bound metal cluster was controlled by the availability of fixed nitrogen in combination with local environmental factors that influenced metal availability until a point in Earth’s geologic history where the most desirable metal, Mo, became sufficiently bioavailable to bring about and refine the solution (Mo-nitrogenase) we see perpetuated in extant biology.


Journal of Bacteriology | 2011

Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii

Trinity L. Hamilton; Marcus Ludwig; Ray Dixon; Eric S. Boyd; Patricia C. Dos Santos; João C. Setubal; Donald A. Bryant; Dennis R. Dean; John W. Peters

Most biological nitrogen (N(2)) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandii cultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N(2) fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N(2) fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo.


Applied and Environmental Microbiology | 2014

Chemolithotrophic Primary Production in a Subglacial Ecosystem

Eric S. Boyd; Trinity L. Hamilton; Jeff R. Havig; Mark L. Skidmore; Everett L. Shock

ABSTRACT Glacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles.


Environmental Microbiology | 2016

The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

Trinity L. Hamilton; Donald A. Bryant; Jennifer L. Macalady

Summary Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well‐preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earths biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane‐derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earths surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earths redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earths history, and oxygenic photosynthesis is the largest source of O 2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co‐occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low‐oxygen environments, including in water columns as well as mats, throughout much of Earths history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis, including the activity of metabolically versatile cyanobacteria, played an important role in delaying the oxygenation of Earths surface ocean during the Proterozoic Eon.


Microbial Ecology | 2011

Environmental Constraints Underpin the Distribution and Phylogenetic Diversity of nifH in the Yellowstone Geothermal Complex

Trinity L. Hamilton; Eric S. Boyd; John W. Peters

Biological nitrogen fixation is a keystone process in many ecosystems, providing bioavailable forms of fixed nitrogen for members of the community. In the present study, degenerate primers targeting the nitrogenase iron protein-encoding gene (nifH) were designed and employed to investigate the physical and chemical parameters that underpin the distribution and diversity of nifH as a proxy for nitrogen-fixing organisms in the geothermal springs of Yellowstone National Park (YNP), Wyoming. nifH was detected in 57 of the 64 YNP springs examined, which varied in pH from 1.90 to 9.78 and temperature from 16°C to 89°C. This suggested that the distribution of nifH in YNP is widespread and is not constrained by pH and temperature alone. Phylogenetic and statistical analysis of nifH recovered from 13 different geothermal spring environments indicated that the phylogeny exhibits evidence for both geographical and ecological structure. Model selection indicated that the phylogenetic relatedness of nifH assemblages could be best explained by the geographic distance between sampling sites. This suggests that nifH assemblages are dispersal limited with respect to the fragmented nature of the YNP geothermal spring environment. The second highest ranking explanatory variable for predicting the phylogenetic relatedness of nifH assemblages was spring water conductivity (a proxy for salinity), suggesting that salinity may constrain the distribution of nifH lineages in geographically isolated YNP spring ecosystems. In summary, these results indicate a widespread distribution of nifH in YNP springs, and suggest a role for geographical and ecological factors in constraining the distribution of nifH lineages in the YNP geothermal complex.

Collaboration


Dive into the Trinity L. Hamilton's collaboration.

Top Co-Authors

Avatar

Eric S. Boyd

Montana State University

View shared research outputs
Top Co-Authors

Avatar

John W. Peters

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer L. Macalady

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Donald A. Bryant

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynn P. Tomsho

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Vera Thiel

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Stephan C. Schuster

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge