Trisha D. Scribbans
Queen's University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trisha D. Scribbans.
PLOS ONE | 2014
Trisha D. Scribbans; Brittany A. Edgett; Kira Vorobej; Andrew S. Mitchell; Sophie Joanisse; Jennifer B. L. Matusiak; Gianni Parise; Joe Quadrilatero; Brendon J. Gurd
The current study involved the completion of two distinct experiments. Experiment 1 compared fibre specific and whole muscle responses to acute bouts of either low-volume high-intensity interval training (LV-HIT) or moderate-intensity continuous endurance exercise (END) in a randomized crossover design. Experiment 2 examined the impact of a six-week training intervention (END or LV-HIT; 4 days/week), on whole body and skeletal muscle fibre specific markers of aerobic and anaerobic capacity. Six recreationally active men (Age: 20.7±3.8 yrs; VO2peak: 51.9±5.1 mL/kg/min) reported to the lab on two separate occasions for experiment 1. Following a muscle biopsy taken in a fasted state, participants completed an acute bout of each exercise protocol (LV-HIT: 8, 20-second intervals at ∼170% of VO2peak separated by 10 seconds of rest; END: 30 minutes at ∼65% of VO2peak), immediately followed by a muscle biopsy. Glycogen content of type I and IIA fibres was significantly (p<0.05) reduced, while p-ACC was significantly increased (p<0.05) following both protocols. Nineteen recreationally active males (n = 16) and females (n = 3) were VO2peak-matched and assigned to either the LV-HIT (n = 10; 21±2 yrs) or END (n = 9; 20.7±3.8 yrs) group for experiment 2. After 6 weeks, both training protocols induced comparable increases in aerobic capacity (END: Pre: 48.3±6.0, Mid: 51.8±6.0, Post: 55.0±6.3 mL/kg/min LV-HIT: Pre: 47.9±8.1, Mid: 50.4±7.4, Post: 54.7±7.6 mL/kg/min), fibre-type specific oxidative and glycolytic capacity, glycogen and IMTG stores, and whole-muscle capillary density. Interestingly, only LV-HIT induced greater improvements in anaerobic performance and estimated whole-muscle glycolytic capacity. These results suggest that 30 minutes of END exercise at ∼65% VO2peak or 4 minutes of LV-HIT at ∼170% VO2peak induce comparable changes in the intra-myocellular environment (glycogen content and signaling activation); correspondingly, training-induced adaptations resulting for these protocols, and other HIT and END protocols are strikingly similar.
Applied Physiology, Nutrition, and Metabolism | 2014
Trisha D. Scribbans; Jasmin K. Ma; Brittany A. Edgett; Kira Vorobej; Andrew S. Mitchell; Jason G.E. Zelt; Craig A. Simpson; Joe Quadrilatero; Brendon J. Gurd
The present study examined the effect of concurrent exercise training and daily resveratrol (RSV) supplementation (150 mg) on training-induced adaptations following low-dose high-intensity interval training (HIIT). Sixteen recreationally active (∼22 years, ∼51 mL·kg(-1)·min(-1)) men were randomly assigned in a double-blind fashion to either the RSV or placebo group with both groups performing 4 weeks of HIIT 3 days per week. Before and after training, participants had a resting muscle biopsy taken, completed a peak oxygen uptake test, a Wingate test, and a submaximal exercise test. A main effect of training (p < 0.05) and interaction effect (p < 0.05) on peak aerobic power was observed; post hoc pairwise comparisons revealed that a significant (p < 0.05) increase occurred in the placebo group only. Main effects of training (p < 0.05) were observed for both peak oxygen uptake (placebo - pretraining: 51.3 ± 1.8, post-training: 54.5 ± 1.5 mL·kg(-1)·min(-1), effect size (ES) = 0.93; RSV - pretraining: 49.6 ± 2.2, post-training: 52.3 ± 2.5 mL·kg(-1)·min(-1), ES = 0.50) and Wingate peak power (placebo: pretraining: 747 ± 39, post-training: 809 ± 31 W, ES = 0.84; RSV - pretraining: 679 ± 39, post-training: 691 ± 43 W, ES = 0.12). Fibre-type distribution was unchanged, while a main effect of training (p < 0.05) was observed for succinate dehydrogenase activity and glycogen content, but not α-glycerophosphate dehydrogenase activity or intramuscular lipids in type I and IIA fibres. The fold change in PGC-1α, SIRT1, and SOD2 gene expression following training was significantly (p < 0.05) lower in the RSV group than placebo. These results suggest that concurrent exercise training and RSV supplementation may alter the normal training response induced by low-volume HIIT.
PLOS ONE | 2016
Jacob T. Bonafiglia; Mario P. Rotundo; Jonathan P. Whittall; Trisha D. Scribbans; Ryan B. Graham; Brendon J. Gurd
The current study examined the adaptive response to both endurance (END) and sprint interval training (SIT) in a group of twenty-one recreationally active adults. All participants completed three weeks (four days/ week) of both END (30 minutes at ~65% VO2peak work rate (WR) and SIT (eight, 20-second intervals at ~170% VO2peak WR separated by 10 seconds of active rest) following a randomized crossover study design with a three-month washout period between training interventions. While a main effect of training was observed for VO2peak, lactate threshold, and submaximal heart rate (HR), considerable variability was observed in the individual responses to both END and SIT. No significant positive relationships were observed between END and SIT for individual changes in any variable. Non-responses were determined using two times the typical error (TE) of measurement for VO2peak (0.107 L/min), lactate threshold (15.7 W), and submaximal HR (10.7bpm). Non-responders in VO2peak, lactate threshold, and submaximal HR were observed following both END and SIT, however, the individual patterns of response differed following END and SIT. Interestingly, all individuals responded in at least one variable when exposed to both END and SIT. These results suggest that the individual response to exercise training is highly variable following different training protocols and that the incidence of non-response to exercise training may be reduced by changing the training stimulus for non-responders to three weeks of END or SIT.
Applied Physiology, Nutrition, and Metabolism | 2016
Brendon J. Gurd; Matthew D. Giles; Jacob T. Bonafiglia; James P. Raleigh; John C. Boyd; Jasmin K. Ma; Jason G.E. Zelt; Trisha D. Scribbans
The current study sought to explore the incidence of nonresponders for maximal or submaximal performance following a variety of sprint interval training (SIT) protocols. Data from 63 young adults from 5 previously published studies were utilized in the current analysis. Nonresponders were identified using 2 times the typical error (TE) of measurement for peak oxygen uptake (2 × TE = 1.74 mL/(kg·min)), lactate threshold (2 × TE = 15.7 W), or 500 kcal time-to-completion (TTC; 2 × TE = 306 s) trial. TE was determined on separate groups of participants by calculating the test-retest variance for each outcome. The overall rate of nonresponders for peak oxygen uptake across all participants studied was 22% (14/63) with 4 adverse responders observed. No nonresponders for peak oxygen uptake were observed in studies where participants trained 4 times per week (n = 18), while higher rates were observed in most studies requiring training 3 times per week (30%-50%; n = 45). A nonresponse rate of 44% (8/18) and 50% (11/22) was observed for the TTC test and lactate threshold, respectively. No significant correlations were observed between the changes in peak oxygen uptake and TTC (r = 0.014; p = 0.96) or lactate threshold (r = 0.17; p = 0.44). The current analysis demonstrates a significant incidence of nonresponders for peak oxygen uptake and heterogeneity in the individual patterns of response following SIT. Additionally, these data support the importance of training dose and suggest that the incidence of nonresponse may be mitigated by utilizing the optimal dose of SIT.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015
Sophie Joanisse; Bryon R. McKay; Joshua P. Nederveen; Trisha D. Scribbans; Brendon J. Gurd; Jenna B. Gillen; Martin J. Gibala; Mark A. Tarnopolsky; Gianni Parise
The purpose of the present studies was to determine the effect of various nonhypertrophic exercise stimuli on satellite cell (SC) pool activity in human skeletal muscle. Previously untrained men and women (men: 29 ± 9 yr and women: 29 ± 2 yr, n = 7 each) completed 6 wk of very low-volume high-intensity sprint interval training. In a separate study, recreationally active men (n = 16) and women (n = 3) completed 6 wk of either traditional moderate-intensity continuous exercise (n = 9, 21 ± 4 yr) or low-volume sprint interval training (n = 10, 21 ± 2 yr). Muscle biopsies were obtained from the vastus lateralis before and after training. The fiber type-specific SC response to training was determined, as was the activity of the SC pool using immunofluorescent microscopy of muscle cross sections. Training did not induce hypertrophy, as assessed by muscle cross-sectional area, nor did the SC pool expand in any group. However, there was an increase in the number of active SCs after each intervention. Specifically, the number of activated (Pax7(+)/MyoD(+), P ≤ 0.05) and differentiating (Pax7(-)/MyoD(+), P ≤ 0.05) SCs increased after each training intervention. Here, we report evidence of activated and cycling SCs that may or may not contribute to exercise-induced adaptations while the SC pool remains constant after three nonhypertrophic exercise training protocols.
Applied Physiology, Nutrition, and Metabolism | 2016
Jeremy J. Walsh; Trisha D. Scribbans; Robert F. Bentley; J. Mikhail Kellawan; Brendon J. Gurd; Michael E. Tschakovsky
Resistance exercise is an efficacious stimulus for improving cognitive function in older adults, which may be mediated by the upregulation of blood-borne neurotrophic growth factors (NTFs) like brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1). However, the NTF response to resistance exercise and training in older adults is poorly understood. Therefore, the purpose of this study was to characterize the timing and magnitude of the NTF response following an acute bout of resistance exercise before and after 8 weeks of resistance training. Ten cognitively normal, older adults (ages 60-77 years, five men) were examined. The acute NTF response to resistance exercise was assessed via serum samples drawn at designated time points following exercise. This procedure was then repeated following 8 weeks of resistance training. BDNF increased immediately post-exercise (Δ9% pre-training, Δ11% post-training) then returned to resting levels while IGF-1 remained stable following resistance exercise before and after 8 weeks of resistance training. Basal levels of both NTFs were unaffected by the 8 week training period. We report a transient increase in serum BDNF following a bout of resistance exercise in older adults, which could have implications for the design of interventions seeking to maximize cognitive function in older adults.
PLOS ONE | 2014
Cameron B. Williams; Meghan C. Hughes; Brittany A. Edgett; Trisha D. Scribbans; Craig A. Simpson; Christopher G. R. Perry; Brendon J. Gurd
The current study tested the hypothesis that a single, moderate dose of RSV would activate the AMPK/SIRT1 axis in human skeletal muscle and adipose tissue. Additionally, the effects of RSV on mitochondrial respiration in PmFBs were examined. Eight sedentary men (23.8±2.4 yrs; BMI: 32.7±7.1) reported to the lab on two occasions where they were provided a meal supplemented with 300 mg of RSV or a placebo. Blood samples, and a muscle biopsy were obtained in the fasted state and again, with the addition of an adipose tissue biopsy, two hours post-prandial. The effect of RSV on mitochondrial respiration was examined in PmFBs taken from muscle biopsies from an additional eight men (23.4±5.4 yrs; BMI: 24.4±2.8). No effect of RSV was observed on nuclear SIRT1 activity, acetylation of p53, or phosphorylation of AMPK, ACC or PKA in either skeletal muscle or adipose tissue. A decrease in post absorptive insulin levels was accompanied by elevated skeletal muscle phosphorylation of p38 MAPK, but no change in either skeletal muscle or adipose tissue insulin signalling. Mitochondrial respiration in PmFBs was rapidly inhibited by RSV at 100–300 uM depending on the substrate examined. These results question the efficacy of a single dose of RSV at altering skeletal muscle and adipose tissue AMPK/SIRT1 activity in humans and suggest that RSV mechanisms of action in humans may be associated with altered cellular energetics resulting from impaired mitochondrial ATP production.
Applied Physiology, Nutrition, and Metabolism | 2016
James P. Raleigh; Matthew D. Giles; Trisha D. Scribbans; Brittany A. Edgett; Laura J. Sawula; Jacob T. Bonafiglia; Ryan B. Graham; Brendon J. Gurd
High-intensity interval training (HIIT) improves peak oxygen uptake (V̇O2peak) and oxygen uptake (V̇O2) kinetics, however, it is unknown whether an optimal intensity of HIIT exists for eliciting improvements in these measures of whole-body oxidative metabolism. The purpose of this study was to (i) investigate the effect of interval intensity on training-induced adaptations in V̇O2peak and V̇O2 kinetics, and (ii) examine the impact of interval intensity on the frequency of nonresponders in V̇O2peak. Thirty-six healthy men and women completed 3 weeks of cycle ergometer HIIT, consisting of intervals targeting 80% (LO), 115% (MID), or 150% (HI) of peak aerobic power. Total work performed per training session was matched across groups. A main effect of training (p < 0.05) and a significant interaction effect was observed for V̇O2peak, with the change in V̇O2peak being greater (p < 0.05) in the MID group than the LO group; however, no differences were observed between the HI group and either the MID or LO groups (ΔV̇O2peak; LO, 2.7 ± 0.7 mL·kg(-1)·min(-1); MID, 5.8 ± 0.7; HI, 4.2 ± 1.0). The greatest proportion of responders was observed in the MID group (LO, 8/12; MID, 12/13; HI, 9/11). A nonsignificant relationship (p = 0.26; r(2) = 0.04) was found between the changes in V̇O2peak and τV̇O2. These results suggest that training at intensities around V̇O2peak may represent a threshold intensity above which further increases in training intensity provide no additional adaptive benefit. The dissociation between changes in V̇O2peak and V̇O2 kinetics also reflects the different underlying mechanisms regulating these adaptations.
Applied Physiology, Nutrition, and Metabolism | 2017
Trisha D. Scribbans; Brittany A. Edgett; Jacob T. Bonafiglia; Brittany L. Baechler; Joe Quadrilatero; Brendon J. Gurd
The purpose of the current investigation was to determine if an exercise-mediated upregulation of nuclear and mitochondrial-encoded genes targeted by the transcriptional co-activator peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) occurs in a systematic manner following different exercise intensities in humans. Ten recreationally active males (age: 23 ± 3 years; peak oxygen uptake: 41.8 ± 6.6 mL·kg-1·min-1) completed 2 acute bouts of work-matched interval exercise at ∼73% (low; LO) and ∼100% (high; HI) of work rate at peak oxygen uptake in a randomized crossover design. Muscle biopsies were taken before, immediately after, and 3 h into recovery following each exercise bout. A main effect of time (p < 0.05) was observed for glycogen depletion. PGC-1α messenger RNA (mRNA) increased following both conditions and was significantly (p < 0.05) higher following HI compared with LO (PGC-1α, LO: +442% vs. HI: +845%). PDK4 mRNA increased following LO whereas PPARα, NRF1, and CS increased following HI. However, a systematic upregulation of nuclear and mitochondrial-encoded genes was not present as TFAM, COXIV, COXI, COXII, ND1, and ND4 mRNA were unchanged. However, changes in COXI, COXII, ND1 and ND4 mRNA were positively correlated following LO and COXI, ND1, and ND4 were positively correlated following HI, which suggests mitochondrial-encoded gene expression was coordinated. PGC-1α and ND4 mRNA, as well as PGC-1α mRNA and the change in muscle glycogen, were positively correlated in response to LO. The lack of observed systematic upregulation of nuclear- and mitochondrial-encoded genes suggests that exercise-induced upregulation of PGC-1α targets are differentially regulated during the initial hours following acute exercise in humans.
SAGE Open Nursing | 2017
Ira Carson; Morgan J Batson; Joan Tranmer; Trisha D. Scribbans; Brendon J. Gurd; Kyra E. Pyke
High cardiovascular and cortisol reactivity to stressful tasks are predictors of increased future cardiovascular risk. Few studies have investigated the impact of shift work on cardiovascular reactivity, and none have examined cortisol reactivity. The purpose of this study was to compare cardiovascular and cortisol stress reactivity in female shift workers (SW) versus non-shift workers (NSW). Nineteen SW (40 ± 11 years) and 19 NSW (42 ± 11 years) participated. Heart rate, systolic blood pressure, and diastolic blood pressure (DBP) were measured at rest, and during each minute of a speech (5 min) and mental arithmetic (5 min) stress task. Serum cortisol was measured pre- and poststress task (immediately and 15 min post). Values are means ± SD. Peak increases in DBP during the task did not differ between groups (p = .261), however, analyzed over time there was an interaction such that DBP increased significantly more in SW during the fifth minute of the speech task (p = .035). There were no group differences in heart rate or systolic blood pressure responses. The increase in cortisol also did not differ between groups (ΔSW: 5.5 ± 7.5 µg/dL, ΔNSW: 1.8 ± 2.9 µg/dL, p = .165). However, when compared separately, the increase in cortisol from baseline to peak poststress was significant in SW (p = .013) but not in NSW (p = .125). In conclusion, these preliminary data suggest that shift work exposure may have a modest influence on cardiovascular and cortisol reactivity. Further research is necessary to fully characterize and explore the importance of stress reactivity in this population.