Tristan A. Rodriguez
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tristan A. Rodriguez.
Nature | 2001
Jane Brennan; Cindy C. Lu; Dominic P. Norris; Tristan A. Rodriguez; Rosa Beddington; Elizabeth J. Robertson
Shortly after implantation the mouse embryo comprises three tissue layers. The founder tissue of the embryo proper, the epiblast, forms a radially symmetric cup of epithelial cells that grows in close apposition to the extra-embryonic ectoderm and the visceral endoderm. This simple cylindrical structure exhibits a distinct molecular pattern along its proximal–distal axis. The anterior–posterior axis of the embryo is positioned later by coordinated cell movements that rotate the pre-existing proximal–distal axis. The transforming growth factor-β family member Nodal is known to be required for formation of the anterior–posterior axis. Here we show that signals from the epiblast are responsible for the initiation of proximal–distal polarity. Nodal acts to promote posterior cell fates in the epiblast and to maintain molecular pattern in the adjacent extra-embryonic ectoderm. Both of these functions are independent of Smad2. Moreover, Nodal signals from the epiblast also pattern the visceral endoderm by activating the Smad2-dependent pathway required for specification of anterior identity in overlying epiblast cells. Our experiments show that proximal–distal and subsequent anterior–posterior polarity of the pregastrulation embryo result from reciprocal cell–cell interactions between the epiblast and the two extra-embryonic tissues.
Mechanisms of Development | 1998
Sally L. Dunwoodie; Tristan A. Rodriguez; Rosa Beddington
Msg1 and Mrg1 are founding members of a gene family which exhibit distinct patterns of gene expression during mouse embryogenesis. Sequence analysis reveals that these genes are unlike any other gene identified to date, but they share two near-identical sequence domains. The Msg1 and Mrg1 expression profiles during early development are distinct from each other. Msg1 is predominantly expressed in nascent mesoderm, the heart tube, limb bud and sclerotome. Intriguingly, Msg1 expression is restricted, within these developing mesodermal sites, to posterior domains. Mrg1 is expressed prior to gastrulation in the anterior visceral endoderm. Expression is maintained in the endoderm once gastrulation has begun and commences in the rostralmost embryonic mesoderm which underlies the anterior visceral endoderm. Mrg1 expression persists in this rostral mesoderm as it is translocated caudalwards during the invagination of the foregut and the formation of the heart. Later Mrg1 expression predominates in the septum transversum caudal to the heart. This expression pattern suggests that the septum transversum originates from the rostralmost embryonic mesoderm which first expressed Mrg1 at the late primitive streak stage.
Development | 2007
Aida Di-Gregorio; Margarida Sancho; Daniel W. Stuckey; Lucy A. Crompton; Jonathan Godwin; Yuji Mishina; Tristan A. Rodriguez
The specification of a subset of epiblast cells to acquire a neural fate constitutes the first step in the generation of the nervous system. Little is known about the signals required for neural induction in the mouse. We have analysed the role of BMP signalling in this process. We demonstrate that prior to gastrulation, Bmp2/4 signalling via Bmpr1a maintains epiblast pluripotency and prevents precocious neural differentiation of this tissue, at least in part by maintaining Nodal signalling. We find that during gastrulation, BMPs of the 60A subgroup cooperate with Bmp2/4 to maintain pluripotency. The inhibition of neural fate by BMPs is independent of FGF signalling, as inhibition of FGF signalling between 5.5 and 7.5 days post-coitum does not block neural differentiation in the mouse embryo. Together, our results demonstrate that inhibition of BMP signalling has a central role during neural induction in mammals and suggest that FGFs do not act as neural inducers in the post-implantation mouse embryo.
Development | 2005
Tristan A. Rodriguez; Shankar Srinivas; Melanie Clements; James C. Smith; Rosa Beddington
The anterior visceral endoderm (AVE) is an extra-embryonic tissue required for specifying anterior pattern in the mouse embryo. The AVE is induced at the distal tip of the 5.5 dpc embryo and then migrates to the prospective anterior, where it imparts anterior identity upon the underlying epiblast (the tissue that gives rise to the embryo proper). Little is known about how the AVE is induced and what directs its migration. In this paper, we describe an essential role for another extra-embryonic tissue, the extra-embryonic ectoderm (ExE), in patterning the AVE and epiblast. Removal of the ExE in pre-gastrulation embryos leads to ectopic AVE formation, to a failure of AVE cell migration and to the assumption by the entire epiblast of an anterior identity. Ectopic transplantation of ExE cells inhibits AVE formation and leads to an expansion of the posterior epiblast marker T. These results demonstrate that the ExE restricts the induction of the AVE to the distal tip of the mouse embryo and is required to initiate the migration of these cells to the prospective anterior. Together, these data reveal a novel role for the ExE in the specification of the anteroposterior axis of the mouse embryo.
Developmental Cell | 2013
Margarida Sancho; Aida Di-Gregorio; Nancy George; Sara Pozzi; Juan Miguel Sánchez; Barbara Pernaute; Tristan A. Rodriguez
Summary A fundamental question in developmental biology is whether there are mechanisms to detect stem cells with mutations that, although not adversely affecting viability, would compromise their ability to contribute to further development. Here, we show that cell competition is a mechanism regulating the fitness of embryonic stem cells (ESCs). We find that ESCs displaying defective bone morphogenetic protein signaling or defective autophagy or that are tetraploid are eliminated at the onset of differentiation by wild-type cells. This elimination occurs in an apoptosis-dependent manner and is mediated by secreted factors. Furthermore, during this process, we find that establishment of differential c-Myc levels is critical and that c-Myc overexpression is sufficient to induce competitive behavior in ESCs. Cell competition is, therefore, a process that allows recognition and elimination of defective cells during the early stages of development and is likely to play important roles in tissue homeostasis and stem cell maintenance.
Cell Reports | 2014
Nieves Peltzer; Eva Rieser; Lucia Taraborrelli; Peter Draber; Maurice Darding; Barbara Pernaute; Yutaka Shimizu; Aida Sarr; Helena Draberova; Antonella Montinaro; Juan Pedro Martinez-Barbera; John Silke; Tristan A. Rodriguez; Henning Walczak
Linear ubiquitination is crucial for innate and adaptive immunity. The linear ubiquitin chain assembly complex (LUBAC), consisting of HOIL-1, HOIP, and SHARPIN, is the only known ubiquitin ligase that generates linear ubiquitin linkages. HOIP is the catalytically active LUBAC component. Here, we show that both constitutive and Tie2-Cre-driven HOIP deletion lead to aberrant endothelial cell death, resulting in defective vascularization and embryonic lethality at midgestation. Ablation of tumor necrosis factor receptor 1 (TNFR1) prevents cell death, vascularization defects, and death at midgestation. HOIP-deficient cells are more sensitive to death induction by both tumor necrosis factor (TNF) and lymphotoxin-α (LT-α), and aberrant complex-II formation is responsible for sensitization to TNFR1-mediated cell death in the absence of HOIP. Finally, we show that HOIPs catalytic activity is necessary for preventing TNF-induced cell death. Hence, LUBAC and its linear-ubiquitin-forming activity are required for maintaining vascular integrity during embryogenesis by preventing TNFR1-mediated endothelial cell death.
Epigenetics & Chromatin | 2008
Tatyana B. Nesterova; Bilyana C Popova; Bradley S Cobb; Sara Norton; Claire E. Senner; Y. Amy Tang; Thomas Spruce; Tristan A. Rodriguez; Takashi Sado; Matthias Merkenschlager; Neil Brockdorff
BackgroundX chromosome inactivation is the mechanism used in mammals to achieve dosage compensation of X-linked genes in XX females relative to XY males. Chromosome silencing is triggered in cis by expression of the non-coding RNA Xist. As such, correct regulation of the Xist gene promoter is required to establish appropriate X chromosome activity both in males and females. Studies to date have demonstrated co-transcription of an antisense RNA Tsix and low-level sense transcription prior to onset of X inactivation. The balance of sense and antisense RNA is important in determining the probability that a given Xist allele will be expressed, termed the X inactivation choice, when X inactivation commences.ResultsHere we investigate further the mechanism of Xist promoter regulation. We demonstrate that both sense and antisense transcription modulate Xist promoter DNA methylation in undifferentiated embryonic stem (ES) cells, suggesting a possible mechanistic basis for influencing X chromosome choice. Given the involvement of sense and antisense RNAs in promoter methylation, we investigate a possible role for the RNA interference (RNAi) pathway. We show that the Xist promoter is hypomethylated in ES cells deficient for the essential RNAi enzyme Dicer, but that this effect is probably a secondary consequence of reduced levels of de novo DNA methyltransferases in these cells. Consistent with this we find that Dicer-deficient XY and XX embryos show appropriate Xist expression patterns, indicating that Xist gene regulation has not been perturbed.ConclusionWe conclude that Xist promoter methylation prior to the onset of random X chromosome inactivation is influenced by relative levels of sense and antisense transcription but that this probably occurs independent of the RNAi pathway. We discuss the implications for this data in terms of understanding Xist gene regulation and X chromosome choice in random X chromosome inactivation.
PLOS Biology | 2012
Georgios Trichas; Aaron M. Smith; Natalia White; Vivienne Wilkins; Tomoko Watanabe; Abigail Moore; Bradley Joyce; Jacintha Sugnaseelan; Tristan A. Rodriguez; David Kay; Ruth E. Baker; Philip K. Maini; Shankar Srinivas
Modeling and experimental results suggest a role for Planar Cell Polarity-dependent multi-cellular rosette structures in ensuring correct epithelial cell migration in the mouse visceral endoderm.
Molecular and Cellular Biology | 2004
Tristan A. Rodriguez; Duncan B. Sparrow; Annabelle Scott; Sarah L. Withington; Jost I. Preis; Jan Michalicek; Melanie Clements; Tania E. Tsang; Toshi Shioda; Rosa Beddington; Sally L. Dunwoodie
ABSTRACT Cited1 is a transcriptional cofactor that interacts with Smad4, estrogen receptors α and β, TFAP2, and CBP/p300. It is expressed in a restricted manner in the embryo as well as in extraembryonic tissues during embryonic development. In this study we report the engineering of a loss-of-function Cited1 mutation in the mouse. Cited1 null mutants show growth restriction at 18.5 days postcoitum, and most of them die shortly after birth. Half the heterozygous females, i.e., those that carry a paternally inherited wild-type Cited1 allele, are similarly affected. Cited1 is normally expressed in trophectoderm-derived cells of the placenta; however, in these heterozygous females, Cited1 is not expressed in these cells. This occurs because Cited1 is located on the X chromosome, and thus the wild-type Cited1 allele is not expressed because the paternal X chromosome is preferentially inactivated. Loss of Cited1 resulted in abnormal placental development. In mutants, the spongiotrophoblast layer is irregular in shape and enlarged while the labyrinthine layer is reduced in size. In addition, the blood spaces within the labyrinthine layer are disrupted; the maternal sinusoids are considerably larger in mutants, leading to a reduction in the surface area available for nutrient exchange. We conclude that Cited1 is required in trophoblasts for normal placental development and subsequently for embryo viability.
Development | 2004
Amer Ahmed Rana; Juan Pedro Martinez Barbera; Tristan A. Rodriguez; Denise Lynch; Elizabeth M. A. Hirst; James C. Smith; Rosa Beddington
Dyneins have been implicated in left-right axis determination during embryonic development and in a variety of human genetic syndromes. In this paper, we study the recently discovered mouse dynein 2 light intermediate chain (mD2LIC), which is believed to be involved in retrograde intraflagella transport and which, like left-right dynein, is expressed in the node of the mouse embryo. Cells of the ventral node of mouse embryos lacking mD2LIC have an altered morphology and lack monocilia, and expression of Foxa2 and Shh in this structure is reduced or completely absent. At later stages, consistent with the absence of nodal cilia, mD2LIC is required for the establishment of the left-right axis and for normal expression of Nodal, and the ventral neural tube fails to express Shh, Foxa2 and Ebaf. mD2LIC also functions indirectly in the survival of anterior definitive endoderm and in the maintenance of the anterior neural ridge, probably through maintenance of Foxa2/Hnf3β expression. Together, our results indicate that mD2LIC is required to maintain or establish ventral cell fates and for correct signalling by the organiser and midline, and they identify the first embryonic function of a vertebrate cytoplasmic dynein.