Tristan D. McClure-Begley
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tristan D. McClure-Begley.
The Journal of Neuroscience | 2007
Raad Nashmi; Cheng Xiao; Purnima Deshpande; Sheri McKinney; Sharon R. Grady; Paul Whiteaker; Qi Huang; Tristan D. McClure-Begley; Jon Lindstrom; Cesar Labarca; Allan C. Collins; Michael J. Marks; Henry A. Lester
Understanding effects of chronic nicotine requires identifying the neurons and synapses whose responses to nicotine itself, and to endogenous acetylcholine, are altered by continued exposure to the drug. To address this problem, we developed mice whose α4 nicotinic receptor subunits are replaced by normally functioning fluorescently tagged subunits, providing quantitative studies of receptor regulation at micrometer resolution. Chronic nicotine increased α4 fluorescence in several regions; among these, midbrain and hippocampus were assessed functionally. Although the midbrain dopaminergic system dominates reward pathways, chronic nicotine does not change α4* receptor levels in dopaminergic neurons of ventral tegmental area (VTA) or substantia nigra pars compacta. Instead, upregulated, functional α4* receptors localize to the GABAergic neurons of the VTA and substantia nigra pars reticulata. In consequence, GABAergic neurons from chronically nicotine-treated mice have a higher basal firing rate and respond more strongly to nicotine; because of the resulting increased inhibition, dopaminergic neurons have lower basal firing and decreased response to nicotine. In hippocampus, chronic exposure to nicotine also increases α4* fluorescence on glutamatergic axons of the medial perforant path. In hippocampal slices from chronically treated animals, acute exposure to nicotine during tetanic stimuli enhances induction of long-term potentiation in the medial perforant path, showing that the upregulated α4* receptors in this pathway are also functional. The pattern of cell-specific upregulation of functional α4* receptors therefore provides a possible explanation for two effects of chronic nicotine: sensitization of synaptic transmission in forebrain and tolerance of dopaminergic neuron firing in midbrain.
The Journal of Neuroscience | 2007
Yaroslav Teper; Douglas G. Whyte; Elizabeth Cahir; Henry A. Lester; Sharon R. Grady; Michael J. Marks; Bruce N. Cohen; Carlos Fonck; Tristan D. McClure-Begley; J. Michael McIntosh; Cesar Labarca; Andrew J. Lawrence; Feng Chen; Ilse Gantois; Philip J. Davies; Steven Petrou; Mark Murphy; John L. Waddington; Malcolm K. Horne; Samuel F. Berkovic; John Drago
We generated a mouse line harboring an autosomal-dominant nocturnal frontal lobe epilepsy (ADNFLE) mutation: the α4 nicotinic receptor S248F knock-in strain. In this mouse, modest nicotine doses (1–2 mg/kg) elicit a novel behavior termed the dystonic arousal complex (DAC). The DAC includes stereotypical head movements, body jerking, and forelimb dystonia; these behaviors resemble some core features of ADNFLE. A marked Straub tail is an additional component of the DAC. Similar to attacks in ADNFLE, the DAC can be partially suppressed by the sodium channel blocker carbamazepine or by pre-exposure to a very low dose of nicotine (0.1 mg/kg). The DAC is centrally mediated, genetically highly penetrant, and, surprisingly, not associated with overt ictal electrical activity as assessed by (1) epidural or frontal lobe depth-electrode electroencephalography or (2) hippocampal c-fos-regulated gene expression. Heterozygous knock-in mice are partially protected from nicotine-induced seizures. The noncompetitive antagonist mecamylamine does not suppress the DAC, although it suppresses high-dose nicotine-induced wild-type-like seizures. Experiments on agonist-induced 86Rb+ and neurotransmitter efflux from synaptosomes and on α4S248Fβ2 receptors expressed in oocytes confirm that the S248F mutation confers resistance to mecamylamine blockade. Genetic background, gender, and mutant gene expression levels modulate expression of the DAC phenotype in mice. The S248F mouse thus appears to provide a model for the paroxysmal dystonic element of ADNFLE semiology. Our model complements what is seen in other ADNFLE animal models. Together, these mice cover the spectrum of behavioral and electrographic events seen in the human condition.
Journal of Pharmacology and Experimental Therapeutics | 2011
Michael J. Marks; Tristan D. McClure-Begley; Paul Whiteaker; Outi Salminen; Robert W. B. Brown; John Cooper; Allan C. Collins; Jon Lindstrom
Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [125I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [125I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [125I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [125I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [125I]epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein.
Molecular Pharmacology | 2009
Tristan D. McClure-Begley; Nathan M. King; Allan C. Collins; Jerry A. Stitzel; Jeanne M. Wehner; Christopher M. Butt
Nicotinic acetylcholine receptor (nAChR) agonists stimulate the release of GABA from GABAergic nerve terminals, but the nAChR subtypes that mediate this effect have not been elucidated. The studies reported here used synaptosomes derived from the cortex, hippocampus, striatum, and thalamus of wild-type and α4-, α5-, α7-, β2-, and β4-null mutant mice to identify nAChR subtypes involved in acetylcholine (ACh)-evoked GABA release. Null mutation of genes encoding the α4 or β2 subunits resulted in complete loss of ACh-stimulated [3H]GABA release in all four brain regions. In contrast, α5 gene deletion exerted a small but significant decrease in maximal ACh-evoked [3H]GABA release in hippocampus and striatum, with a more profound effect in cortex. Acetylcholine-stimulated [3H]GABA release from thalamic synaptosomes was not significantly affected by α5 gene deletion. No effect was detected in the four brain regions examined in α7- or β4-null mutant mice. Further analysis of ACh-evoked [3H]GABA release revealed biphasic concentration-response relationships in the four brain regions examined from all wild-type animals and in α5 null mutant mice. Moreover, a selective reduction in the maximum response of the high-affinity component was apparent in α5-null mutant mice. The results demonstrate that α4β2-type nAChRs are critical for ACh-stimulated [3H]GABA release from all four brain regions examined. In addition, the results suggest that α5-containing receptors on GABAergic nerve terminals comprise a fraction of the high ACh-sensitivity component of the concentration-response curve and contribute directly to the ability of nicotinic agonists to evoke GABA release in these regions.
Alcoholism: Clinical and Experimental Research | 2005
Barbara J. Bowers; Tristan D. McClure-Begley; Jason J. Keller; Richard Paylor; Allan C. Collins; Jeanne M. Wehner
BACKGROUND The finding that most people with alcoholism are also heavy smokers prompted several research groups to evaluate the effects of ethanol on neuronal nicotinic acetylcholine receptor (nAChR) function. Data collected in vitro indicate that physiologically relevant concentrations of ethanol inhibit the functional activation of homomeric alpha7 nAChRs, which are one of the most abundant nAChR subtypes expressed in the mammalian brain. The studies outlined here used alpha7 gene knockout (null mutant) mice to evaluate the potential role of alpha7 nAChRs in modulating selected behavioral and physiological effects produced by ethanol. METHODS Current evidence indicates that many responses to ethanol are not genetically correlated. Therefore, the authors measured the effects of acute administration of ethanol on several behaviors that are altered by both ethanol and nicotine: two tests of locomotor activity, acoustic startle, prepulse inhibition of acoustic startle, and body temperature. Ethanol-induced durations of loss of righting reflex and ethanol elimination rates were also determined. These studies used null mutant (alpha7(-/-)) and wild-type (alpha7(-/-)) mice. RESULTS Relative to alpha7(+/+) mice, alpha7(-/-) mice were more sensitive to the activating effects of ethanol on open-field activity, ethanol-induced hypothermia, and duration of loss of the righting response. Deletion of the alpha7 gene did not influence the effects of ethanol on Y-maze crossing or rearing activities, acoustic startle, or prepulse inhibition of startle. Gene deletion did not alter ethanol metabolism. CONCLUSIONS These results indicate that some but not all of the behavioral effects of ethanol are mediated in part by effects on nAChRs that include the alpha7 subunit and may help to explain the robust association between alcohol consumption and the use of tobacco.
Alcoholism: Clinical and Experimental Research | 2003
Jeremy C. Owens; Seth A. Balogh; Tristan D. McClure-Begley; Christopher M. Butt; Cesar Labarca; Henry A. Lester; Marina R. Picciotto; Jeanne M. Wehner; Allan C. Collins
BACKGROUND Ethanol modulates the functional activity of alpha4beta2 neuronal nicotinic cholinergic receptors (nAChR) when measured in vitro, but the potential role of alpha4beta2 nAChRs in regulating behavioral effects of ethanol is unknown. Recently, Tritto et al. (Tritto T, Stitzel JA, Marks MJ, Romm E, Collins AC (2002) Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in alpha4 and alpha6 nicotinic receptor genes. Pharmacogenetics 12:197-208) reported that a polymorphism (A529T) in the alpha4 nAChR subunit gene is associated with variability in nicotines effects on startle in the LSxSS recombinant inbred (RI) strains. Ethanol also alters the acoustic startle response. Thus, we evaluated the potential role of alpha4beta2 nAChRs in modulating ethanols effects on acoustic startle. METHODS The effects of ethanol on acoustic startle were determined in the LSxSS RI strains. In addition, the effects of ethanol and nicotine were also measured in alpha4 gain of function and beta2 null mutant mice. The beta2 mutants do not express the major variant of alpha4 nAChRs, alpha4beta2. RESULTS An association between the alpha4 A529T polymorphism and ethanols effects on startle was found in the LSxSS RI strains; those strains that express the A529 variant of alpha4 were more sensitive to ethanol-induced depression of startle. The alpha4 gain of function mutants were more sensitive to the effects of both nicotine and ethanol and the beta2 null mutants were less sensitive to both drugs. CONCLUSIONS alpha4beta2-containing nAChRs may play important roles in modulating the effects of both ethanol and nicotine on the acoustic startle response. We suggest that nAChR subunit genes should be evaluated as potential contributors to both alcoholism and tobacco abuse.
Biological Psychiatry | 2013
Jonas Hannestad; Kelly P. Cosgrove; Nicole DellaGioia; Evgenia Perkins; Frederic Bois; Zubin Bhagwagar; John Seibyl; Tristan D. McClure-Begley; Marina R. Picciotto; Irina Esterlis
BACKGROUND The cholinergic system is substantially altered in individuals with major depression and is partially restored when depression remits. We quantified the availability of β2-subunit-containing nicotinic acetylcholine receptors (β2*-nAChR) in subjects with bipolar disorder. METHODS Twenty-five subjects with bipolar disorder (15 depressed, 10 euthymic) and 25 sex- and age-matched control subjects had a [(123)I]5IA-85380 single photon emission computed tomography scan to quantify β2*-nAChR VT/fP (total volume of distribution, corrected for individual differences in metabolism and protein binding of the radiotracer). Average VT/fP was compared between groups and correlated with clinical characteristics. Postmortem analysis of β2*-nAChRs was conducted using equilibrium binding with [(125)I]5IA in subjects with bipolar disorder and matched control subjects. RESULTS We showed significantly lower β2*-nAChR availability (20%-38%) in subjects with bipolar depression compared with euthymic and control subjects across all brain regions assessed (frontal, parietal, temporal, and anterior cingulate cortex, hippocampus, amygdala, thalamus, striatum). The postmortem binding study in which endogenous acetylcholine was washed out did not show a statistically significant difference in β2*-nAChR number in temporal cortex of the bipolar depressed and control groups (15% difference; p = .2). CONCLUSIONS We show that the alteration in the cholinergic system observed during a depressive episode appears to resolve during euthymia. We suggest that lower VT/fP observed in vivo may be due to a combination of higher endogenous acetylcholine levels during depression, which could compete with radiotracer binding to the receptor in vivo, and lower receptor number in bipolar depression. Identification of differences in cholinergic signaling in subjects with bipolar depression may improve our understanding of its etiology and reveal new treatment targets.
Journal of Cell Biology | 2015
Vladimir A. Volkov; Paula M. Grissom; Vladimir Arzhanik; Anatoly V. Zaytsev; Kutralanathan Renganathan; Tristan D. McClure-Begley; William M. Old; Natalie G. Ahn; J. Richard McIntosh
Both N- and C-terminal microtubule (MT)-binding domains of CENP-F can follow depolymerizing MT ends while bearing a significant load, and the N-terminal domain prefers binding to curled oligomers of tubulin relative to MT walls by approximately fivefold, suggesting that CENP-F may play a role in the firm bonds that form between kinetochores and the flared plus ends of dynamic MTs.
Pharmacology, Biochemistry and Behavior | 2013
Nichole M. Neugebauer; Emily B. Einstein; Maria B. Lopez; Tristan D. McClure-Begley; Yann S. Mineur; Marina R. Picciotto
Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [³H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior.
Journal of Pharmacology and Experimental Therapeutics | 2014
Tristan D. McClure-Begley; Roger L. Papke; Kathy Stone; Clare Stokes; Aaron D. Levy; Joel Gelernter; Pingxing Xie; Jon Lindstrom; Marina R. Picciotto
Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [3H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.