Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tristan G. Matthews is active.

Publication


Featured researches published by Tristan G. Matthews.


The Astrophysical Journal | 2013

ALIGNMENT BETWEEN FLATTENED PROTOSTELLAR INFALL ENVELOPES AND AMBIENT MAGNETIC FIELDS

Nicholas L. Chapman; Jacqueline A. Davidson; Paul F. Goldsmith; Martin Houde; Woojin Kwon; Zhi Yun Li; Leslie W. Looney; Brenda C. Matthews; Tristan G. Matthews; Giles Novak; Ruisheng Peng; John E. Vaillancourt; Nikolaus H. Volgenau

We present 350 μm polarization observations of four low-mass cores containing Class 0 protostars: L483, L1157, L1448-IRS2, and Serp-FIR1. This is the second paper in a larger survey aimed at testing magnetically regulated models for core-collapse. One key prediction of these models is that the mean magnetic field in a core should be aligned with the symmetry axis (minor axis) of the flattened young stellar object inner envelope (aka pseudodisk). Furthermore, the field should exhibit a pinched or hourglass-shaped morphology as gravity drags the field inward toward the central protostar. We combine our results for the four cores with results for three similar cores that were published in the first paper from our survey. An analysis of the 350 μm polarization data for the seven cores yields evidence of a positive correlation between mean field direction and pseudodisk symmetry axis. Our rough estimate for the probability of obtaining by pure chance a correlation as strong as the one we found is about 5%. In addition, we combine together data for multiple cores to create a source-averaged magnetic field map having improved signal-to-noise ratio, and this map shows good agreement between mean field direction and pseudodisk axis (they are within 15°). We also see hints of a magnetic pinch in the source-averaged map. We conclude that core-scale magnetic fields appear to be strong enough to guide gas infall, as predicted by the magnetically regulated models. Finally, we find evidence of a positive correlation between core magnetic field direction and bipolar outflow axis.


The Astrophysical Journal | 2011

MAGNETIC FIELD STRUCTURE AROUND LOW-MASS CLASS 0 PROTOSTARS: B335, L1527, AND IC348-SMM2

Jacqueline A. Davidson; Giles Novak; Tristan G. Matthews; Brenda C. Matthews; Paul F. Goldsmith; Nicholas L. Chapman; Nikolaus H. Volgenau; John E. Vaillancourt; M. Attard

We report new 350 μm polarization observations of the thermal dust emission from the cores surrounding the low-mass, Class 0 young stellar objects L1527, IC348-SMM2, and B335. We have inferred magnetic field directions from these observations and have used them together with results in the literature to determine whether magnetically regulated core-collapse and star formation models are consistent with the observations. These models predict a pseudo-disk with its symmetry axis aligned with the core magnetic field. The models also predict a magnetic field pinch structure on a scale less than or comparable to the infall radii for these sources. In addition, if the core magnetic field aligns (or nearly aligns) the core rotation axis with the magnetic field before core collapse, then the models predict the alignment (or near alignment) of the overall pinch field structure with the bipolar outflows in these sources. We show that if one includes the distorting effects of bipolar outflows on magnetic fields, then in general the observational results for L1527 and IC348-SMM2 are consistent with these magnetically regulated models. We can say the same for B335 only if we assume that the distorting effects of the bipolar outflow on the magnetic fields within the B335 core are much greater than for L1527 and IC348-SMM2. We show that the energy densities of the outflows in all three sources are large enough to distort the magnetic fields predicted by magnetically regulated models.


The Astrophysical Journal | 2014

Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

Tristan G. Matthews; Peter A. R. Ade; Francesco E. Angilè; Steven J. Benton; Edward L. Chapin; Nicholas L. Chapman; Mark J. Devlin; L. M. Fissel; Yasuo Fukui; N. N. Gandilo; Joshua O. Gundersen; Peter Charles Hargrave; J. Klein; Andrei Korotkov; Lorenzo Moncelsi; Tony Mroczkowski; C. B. Netterfield; Giles Novak; D. Nutter; L. Olmi; Enzo Pascale; Frédérick Poidevin; G. Savini; Douglas Scott; J. A. Shariff; J. D. Soler; Kengo Tachihara; Nicholas Thomas; Matthew D. P. Truch; Carole Tucker

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLASTs 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.


The Astrophysical Journal | 2016

BALLOON-BORNE SUBMILLIMETER POLARIMETRY of the VELA C MOLECULAR CLOUD: SYSTEMATIC DEPENDENCE of POLARIZATION FRACTION on COLUMN DENSITY and LOCAL POLARIZATION-ANGLE DISPERSION

L. M. Fissel; Peter A. R. Ade; Francesco E. Angilè; Peter Ashton; Steven J. Benton; Mark J. Devlin; B. Dober; Yasuo Fukui; Nicholas Galitzki; N. N. Gandilo; J. Klein; Andrei Korotkov; Zhi-Yun Li; Peter G. Martin; Tristan G. Matthews; Lorenzo Moncelsi; Fumitaka Nakamura; C. B. Netterfield; Giles Novak; Enzo Pascale; Frédérick Poidevin; Fabio P. Santos; G. Savini; Douglas Scott; J. A. Shariff; J. D. Soler; Nicholas Thomas; Carole Tucker; Gregory S. Tucker; Derek Ward-Thompson

We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μmdata smoothed to a resolution of 2 5 (approximately 0.5 pc). We show that the mean level of the fractional polarization pand most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p μ N-0.45 S-0.60, where Nis the hydrogen column density and Sis the polarization-angle dispersion on 0.5 pc scales. The decrease of pwith increasing Sis expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of pwith increasing Nmight be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between Nand S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and Sprovide points of comparison between observations and simulations


Monthly Notices of the Royal Astronomical Society | 2014

Empirical modelling of the BLASTPol achromatic half-wave plate for precision submillimetre polarimetry

Lorenzo Moncelsi; Peter A. R. Ade; Francesco E. Angilè; Steven J. Benton; Mark J. Devlin; L. M. Fissel; N. N. Gandilo; Joshua O. Gundersen; Tristan G. Matthews; C. Barth Netterfield; Giles Novak; D. Nutter; Enzo Pascale; Frédérick Poidevin; G. Savini; Douglas Scott; J. D. Soler; L. D. Spencer; Matthew D. P. Truch; Gregory S. Tucker; Jin Zhang

A cryogenic achromatic half-wave plate (HWP) for submillimetre astronomical polarimetry has been designed, manufactured, tested and deployed in the Balloon-borne Large-Aperture Submillimeter Telescope for Polarimetry (BLASTPol). The design is based on the five-slab Pancharatnam recipe and itworks in thewavelength range 200–600 μm, making it the broadestband HWP built to date at (sub)millimetre wavelengths. The frequency behaviour of the HWP has been fully characterized at room and cryogenic temperatures with incoherent radiation from a polarizing Fourier transform spectrometer. We develop a novel empirical model, complementary to the physical and analytical ones available in the literature, that allows us to recover the HWP Mueller matrix and phase shift as a function of frequency and extrapolated to 4 K. We show that most of the HWP non-idealities can be modelled by quantifying one wavelength-dependent parameter, the position of the HWP equivalent axes, which is then readily implemented in a map-making algorithm. We derive this parameter for a range of spectral signatures of input astronomical sources relevant to BLASTPol, and provide a benchmark example of how our method can yield improved accuracy on measurements of the polarization angle on the sky at submillimetre wavelengths.


Proceedings of SPIE | 2012

The balloon-borne large-aperture submillimeter telescope for polarimetry-BLASTPol: performance and results from the 2010 Antarctic flight

Nicholas Galitzki; Peter A. R. Ade; F. E. Angilè; S. J. Benton; Mark J. Devlin; B. Dober; L. M. Fissel; Yasuo Fukui; N. N. Gandilo; J. Klein; Andrei Korotkov; Tristan G. Matthews; Lorenzo Moncelsi; C. B. Netterfield; Giles Novak; D. Nutter; Enzo Pascale; F. Poidevin; G. Savini; D. Scott; J. A. Shariff; J. D. Soler; Carole Tucker; Gregory S. Tucker; Derek Ward-Thompson

The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) is a suborbital mapping experiment designed to study the role played by magnetic fields in the star formation process. BLASTPol uses a total power instrument and an achromatic half-wave plate to modulate the polarization signal. During its first flight from Antarctica in December 2010, BLASTPol made degree scale maps of linearly polarized dust emission from molecular clouds in three wavebands centered at 250, 350, and 500 μm. This unprecedented dataset in terms of sky coverage, with sub-arcminute resolution, allows BLASTPol to trace magnetic fields in star-forming regions at scales ranging from cores to entire molecular cloud complexes. A second long-duration flight is scheduled for December 2012.


Proceedings of SPIE | 2014

Attitude determination for balloon-borne experiments

N. N. Gandilo; Peter A. R. Ade; M. Amiri; F. E. Angilè; S. J. Benton; J. J. Bock; J. R. Bond; Sean Bryan; H. C. Chiang; Carlo R. Contaldi; B. P. Crill; Mark J. Devlin; B. Dober; O. Doré; M. Farhang; J. P. Filippini; L. M. Fissel; A. A. Fraisse; Yasuo Fukui; Nicholas Galitzki; A. E. Gambrel; S. R. Golwala; J. E. Gudmundsson; M. Halpern; Matthew Hasselfield; G. C. Hilton; Warren Holmes; V. V. Hristov; K. D. Irwin; W. C. Jones

An attitude determination system for balloon-borne experiments is presented. The system provides pointing information in azimuth and elevation for instruments flying on stratospheric balloons over Antarctica. In-flight attitude is given by the real-time combination of readings from star cameras, a magnetometer, sun sensors, GPS, gyroscopes, tilt sensors and an elevation encoder. Post-flight attitude reconstruction is determined from star camera solutions, interpolated by the gyroscopes using an extended Kalman Filter. The multi-sensor system was employed by the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol), an experiment that measures polarized thermal emission from interstellar dust clouds. A similar system was designed for the upcoming flight of Spider, a Cosmic Microwave Background polarization experiment. The pointing requirements for these experiments are discussed, as well as the challenges in designing attitude reconstruction systems for high altitude balloon flights. In the 2010 and 2012 BLASTPol flights from McMurdo Station, Antarctica, the system demonstrated an accuracy of < 5’ rms in-flight, and < 5” rms post-flight.


The Astrophysical Journal | 2009

POLARIMETRY OF DG TAU AT 350 μm

Megan Krejny; Tristan G. Matthews; G. Novak; Jungyeon Cho; Hua-bai Li; Hiroko Shinnaga; John E. Vaillancourt

We present the first 350 μm polarization measurement for the disk of the T Tauri star (TTS) DG Tau. The data were obtained using the SHARP polarimeter at the Caltech Submillimeter Observatory. We measured normalized Stokes parameters q= –0.0086 ± 0.0060 and u = –0.0012 ± 0.0061, which gives a 2σ upper limit for the percent polarization of 1.7%. We obtain information about the polarization spectrum by comparing our 350 μm measurement with an 850 μm polarization detection previously published for this source. Comparing the two measurements in Stokes space (not in percent polarization) shows that the two data points are not consistent, i.e., either the degree of polarization or the angle of polarization (or both) must change significantly as one moves from 850 μm to 350 μm. This conclusion concerning the polarization spectrum disagrees with the predictions of a recent model for TTS disk polarization. We show that this discrepancy can be explained by optical depth effects. Specifically, we demonstrate that if one were to add more mass to the model disk, one would expect to obtain a model polarization spectrum in which the polarization degree falls sharply with increasing frequency, consistent with the observations at the two wavelengths. We suggest that multiwavelength polarimetry of TTS disk emission may provide a promising method for probing the opacity of TTS disks.


Astronomy and Astrophysics | 2017

The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

J. D. Soler; Peter A. R. Ade; F. E. Angilè; Peter Ashton; Steven J. Benton; Mark J. Devlin; B. Dober; L. M. Fissel; Yasuo Fukui; Nicholas Galitzki; N. N. Gandilo; Patrick Hennebelle; J. Klein; Zhi-Yun Li; Andrei Korotkov; P. G. Martin; Tristan G. Matthews; Lorenzo Moncelsi; C. B. Netterfield; Giles Novak; Enzo Pascale; Frédérick Poidevin; Fabio P. Santos; G. Savini; D. Scott; J. A. Shariff; Nicholas Thomas; Carole Tucker; G. S. Tucker; Derek Ward-Thompson

We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or “ridges”, where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or “nests”, where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.


Proceedings of SPIE | 2014

BLASTbus electronics: general-purpose readout and control for balloon-borne experiments

S. J. Benton; Peter A. R. Ade; M. Amiri; F. E. Angilè; J. J. Bock; J. R. Bond; Sean Bryan; H. C. Chiang; Carlo R. Contaldi; B. P. Crill; Mark J. Devlin; B. Dober; O. Doré; M. Farhang; J. P. Filippini; L. M. Fissel; A. A. Fraisse; Yasuo Fukui; Nicholas Galitzki; A. E. Gambrel; N. N. Gandilo; S. R. Golwala; J. E. Gudmundsson; M. Halpern; Matthew Hasselfield; G. C. Hilton; Warren Holmes; V. V. Hristov; K. D. Irwin; W. C. Jones

We present the second generation BLASTbus electronics. The primary purposes of this system are detector readout, attitude control, and cryogenic housekeeping, for balloon-borne telescopes. Readout of neutron transmutation doped germanium (NTD-Ge) bolometers requires low noise and parallel acquisition of hundreds of analog signals. Controlling a telescopes attitude requires the capability to interface to a wide variety of sensors and motors, and to use them together in a fast, closed loop. To achieve these different goals, the BLASTbus system employs a flexible motherboard-daughterboard architecture. The programmable motherboard features a digital signal processor (DSP) and field-programmable gate array (FPGA), as well as slots for three daughterboards. The daughterboards provide the interface to the outside world, with versions for analog to digital conversion, and optoisolated digital input/output. With the versatility afforded by this design, the BLASTbus also finds uses in cryogenic, thermometry, and power systems. For accurate timing control to tie everything together, the system operates in a fully synchronous manner. BLASTbus electronics have been successfully deployed to the South Pole, and own on stratospheric balloons.

Collaboration


Dive into the Tristan G. Matthews's collaboration.

Top Co-Authors

Avatar

Mark J. Devlin

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

L. M. Fissel

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giles Novak

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Lorenzo Moncelsi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Klein

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

G. Savini

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge