Troels K. H. Scheel
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Troels K. H. Scheel.
Nature Medicine | 2013
Troels K. H. Scheel; Charles M. Rice
More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the worlds population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease. An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon-free regimens with short treatment duration and fewer side effects are the future of HCV therapy. Ongoing and future trials will determine the best antiviral combinations and whether the current seemingly rich pipeline is sufficient for successful treatment of all patients in the face of major challenges, such as HCV diversity, viral resistance, the influence of host genetics, advanced liver disease and other co-morbidities.
Hepatology | 2009
Judith M. Gottwein; Troels K. H. Scheel; Tanja B. Jensen; Jacob B. Lademann; Jannick Prentoe; Maria L. Knudsen; Anne M. Hoegh; Jens Bukh
Six major hepatitis C virus (HCV) genotypes and numerous subtypes have been described, and recently a seventh major genotype was discovered. Genotypes show significant molecular and clinical differences, such as differential response to combination therapy with interferon‐α and ribavirin. Recently, HCV research has been accelerated by cell culture systems based on the unique growth capacity of strain JFH1 (genotype 2a). By development of JFH1‐based intergenotypic recombinants containing Core, envelope protein 1 and 2 (E1, E2), p7, and nonstructural protein 2 (NS2) of genotype 6a and 7a strains, as well as subtype 1b and 2b strains, we have completed a panel of culture systems for all major HCV genotypes. Efficient growth in Huh7.5 cells depended on adaptive mutations for HK6a/JFH1 (6a/2a, in E1 and E2) and J4/JFH1 (1b/2a, in NS2 and NS3); viability of J8/JFH1 (2b/2a) and QC69/JFH1 (7a/2a) did not require adaptation. To facilitate comparative studies, we generated virus stocks of genotype 1–7 recombinants with infectivity titers of 103.7 to 105.2 50% tissue culture infectious dose/mL and HCV RNA titers of 107.0 to 107.9 IU/mL. Huh7.5 cultures infected with genotype 1–6 viruses had similar spread kinetics, intracellular Core, NS5A, and lipid amounts, and colocalization of Core and NS5A with lipids. Treatment with interferon‐α2b but not ribavirin or amantadine showed a significant antiviral effect. Infection with all genotypes could be blocked by specific antibodies against the putative coreceptors CD81 and scavenger receptor class B type I in a dose‐dependent manner. Finally, neutralizing antibodies in selected chronic phase HCV sera had differential effects against genotype 1–7 viruses. Conclusion: We completed and characterized a panel of JFH1‐based cell culture systems of all seven major HCV genotypes and important subtypes and used these viruses in comparative studies of antivirals, HCV receptor interaction, and neutralizing antibodies. (HEPATOLOGY 2009.)
Mbio | 2013
Amit Kapoor; Peter Simmonds; Troels K. H. Scheel; Brian Hjelle; John M. Cullen; Peter D. Burbelo; Lokendra V. Chauhan; Raja Duraisamy; Maria Sanchez Leon; Komal Jain; Kurt J. Vandegrift; Charles H. Calisher; Charles M. Rice; W. Ian Lipkin
ABSTRACT Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity, and pathogenesis. To address this challenge, we searched for homologous viruses in small mammals, including wild rodents. Here we report the discovery of several new hepaciviruses (HCV-like viruses) and pegiviruses (GB virus-like viruses) that infect wild rodents. Complete genome sequences were acquired for a rodent hepacivirus (RHV) found in Peromyscus maniculatus and a rodent pegivirus (RPgV) found in Neotoma albigula. Unique genomic features and phylogenetic analyses confirmed that these RHV and RPgV variants represent several novel virus species in the Hepacivirus and Pegivirus genera within the family Flaviviridae. The genetic diversity of the rodent hepaciviruses exceeded that observed for hepaciviruses infecting either humans or non-primates, leading to new insights into the origin, evolution, and host range of hepaciviruses. The presence of genes, encoded proteins, and translation elements homologous to those found in human hepaciviruses and pegiviruses suggests the potential for the development of new animal systems with which to model HCV pathogenesis, vaccine design, and treatment. IMPORTANCE The genetic and biological characterization of animal homologs of human viruses provides insights into the origins of human infections and enhances our ability to study their pathogenesis and explore preventive and therapeutic interventions. Horses are the only reported host of nonprimate homologs of hepatitis C virus (HCV). Here, we report the discovery of HCV-like viruses in wild rodents. The majority of HCV-like viruses were found in deer mice (Peromyscus maniculatus), a small rodent used in laboratories to study viruses, including hantaviruses. We also identified pegiviruses in rodents that are distinct from the pegiviruses found in primates, bats, and horses. These novel viruses may enable the development of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses. The genetic and biological characterization of animal homologs of human viruses provides insights into the origins of human infections and enhances our ability to study their pathogenesis and explore preventive and therapeutic interventions. Horses are the only reported host of nonprimate homologs of hepatitis C virus (HCV). Here, we report the discovery of HCV-like viruses in wild rodents. The majority of HCV-like viruses were found in deer mice (Peromyscus maniculatus), a small rodent used in laboratories to study viruses, including hantaviruses. We also identified pegiviruses in rodents that are distinct from the pegiviruses found in primates, bats, and horses. These novel viruses may enable the development of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Troels K. H. Scheel; Judith M. Gottwein; Tanja B. Jensen; Jannick Prentoe; Anne M. Hoegh; Harvey J. Alter; Jesper Eugen-Olsen; Jens Bukh
Efficient in vitro systems to study the life cycle of hepatitis C virus (HCV) were recently developed for JFH1 (genotype 2a), which has unique replication capacity in Huh7 cells. We developed 4a/JFH1 intergenotypic recombinants containing the structural genes (Core, E1, and E2), p7, and all or part of NS2 of the 4a prototype strain ED43 that, after transfection of Huh7.5 cells with RNA transcripts, produced infectious viruses. Compared with the J6/JFH control virus, production of viruses was delayed. However, efficient spread of infection and high HCV RNA and infectivity titers were obtained in serial passages. Sequence analysis of recovered viruses and subsequent reverse genetic studies revealed a vital dependence on one or two NS2 mutations, depending on the 4a/2a junction. Infectivity of ED43/JFH1 viruses was CD81 dependent. The genotype 4 cell culture systems permit functional analyses as well as drug and vaccine research on an increasingly important genotype in the Middle East, Africa, and Europe. We also developed genotype 1a intergenotypic recombinants from H77C with vital mutations in NS3. Using H77C/JFH1 and ED43/JFH1 viruses, we demonstrated high homologous neutralizing antibody titers in 1a and 4a patient sera, respectively. Furthermore, availability of JFH1 viruses with envelope proteins of the six major HCV genotypes permitted cross-neutralization studies; 1a and 4a serum cross-neutralized 1a, 4a, 5a, and 6a but not 2a and 3a viruses. Thus, the JFH1 intergenotypic recombinants will be of importance for future studies of HCV neutralization and accelerate the development of passive and active immunoprophylaxis.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Yi-Ping Li; Judith M. Gottwein; Troels K. H. Scheel; Tanja B. Jensen; Jens Bukh
MicroRNA-122 (miR-122) is believed to stimulate hepatitis C virus (HCV) replication through interaction with two adjacent sites downstream of stem loop I (SLI) within the HCV 5′ untranslated region (5′ UTR). Recently, it was demonstrated that locked nucleic acid SPC3649-induced miR-122 antagonism suppressed HCV genotype 1a and 1b infection in vivo. However, virus-producing culture systems with 5′ UTR of different HCV genotypes have not been available for testing 5′ UTR-based treatment approaches. Using JFH1-based Core-NS2 genotype recombinants, we developed 5′ UTR-NS2 recombinants of HCV genotypes 1a, 1b, 2a, 2b, 3a, 4a, 5a, and 6a with efficient growth in Huh7.5 cells. Deletion mutagenesis studies demonstrated that the 5′ UTR SLI was essential for genotypes 1–6 infection. However, lack of SLI could be compensated for by insertion of other structured HCV or host RNA sequences, including U3 small nucleolar RNA. We demonstrated that SPC3649-induced miR-122 antagonism had a potent antiviral effect against HCV genotypes 1–6 5′ UTR-NS2 viruses. Strikingly, HCV recombinant virus with substitution of SLI and miR-122 binding site 1 (S1) by the U3 RNA sequence was not affected by miR-122 antagonism; this was attributed to the lack of an intact S1 by reverse genetics studies. Therefore, we engineered the corresponding U3 RNA sequences into S1 and demonstrated that HCV recombinants with wild-type SLI and single or combined mutations at four of eight nucleotides of S1 were viable in Huh7.5 cells. These mutations reduced the efficacy of SPC3649 treatment, indicating that escape variants to miR-122 antagonism-based HCV therapy could potentially occur.
Gastroenterology | 2011
Troels K. H. Scheel; Judith M. Gottwein; Lotte S. Mikkelsen; Tanja B. Jensen; Jens Bukh
BACKGROUND & AIMS Heterogeneity in the hepatitis C virus (HCV) protein NS5A influences its sensitivity to interferon-based therapy. Furthermore, NS5A is an important target for development of HCV-specific inhibitors. We aimed to develop recombinant infectious cell culture systems that express NS5A from isolates of the 7 major HCV genotypes, and determining their sensitivity to a specific NS5A inhibitor and to interferon-α. METHODS Huh7.5 hepatoma cells were transfected with RNA of genotype 1-7 NS5A recombinants. Viability was determined by measuring HCV replication and infectivity titers. Putative adaptive mutations were analyzed by reverse genetics. The activity of antiviral agents was determined in high-throughput infection assays. RESULTS Cells infected with viable HCV that expressed NS5A of genotypes 1-7 produced relatively high viral titers; most NS5A recombinants required introduction of specific adaptive mutations. The efficacy of the NS5A inhibitor BMS-790052 varied greatly, based on NS5A isolate, with median effective concentration (EC(50)) values ranging from 0.009 nmol/L to 14 nmol/L; the high sensitivity of genotype 1b NS5A to BMS-790052 reflected observations from clinical studies. Specific residues in NS5A domain I were associated with >100-fold variations in sensitivity between isolates of the same HCV subtype. The Y/T2065H mutation conferred resistance to BMS-790052 that varied among NS5A isolates. When infected cultures were incubated with interferon-α, all NS5A recombinants had EC(50) values of ∼0.2 IU/mL, including an NS5A genotype 1b mutant with a putative sensitive-type, interferon sensitivity determining region. CONCLUSIONS We developed efficient in vitro systems in which recombinant viruses express HCV genotypes 1-7 NS5A; these permit genotype- and isolate-specific analyses of NS5A and the effects of antiviral compounds and resistance mutations. These culture systems will facilitate development of specific inhibitors against NS5A of different HCV variants.
Gastroenterology | 2011
Judith M. Gottwein; Troels K. H. Scheel; Tanja B. Jensen; Lubna Ghanem; Jens Bukh
BACKGROUND & AIMS The hepatitis C virus (HCV) genotype influences efficacy of interferon (IFN)-based therapy. HCV protease inhibitors are being licensed for treatment of genotype 1 infection. Because there are limited or no data on efficacy against HCV genotypes 2-7, we aimed at developing recombinant infectious cell culture systems expressing genotype-specific nonstructural (NS) protein 3 protease (NS3P). METHODS Viability of J6/JFH1-based recombinants with genotypes 1-7 NS3P/NS4A was evaluated in Huh7.5 human hepatoma cells. Adaptive mutations were identified in reverse genetic studies. Efficacy of lead compound linear protease inhibitors VX-950 (telaprevir) and SCH503034 (boceprevir) and macrocyclic inhibitors TMC435350, ITMN-191 (danoprevir), and MK-7009 (vaniprevir) was determined in high-throughput infection assays. RESULTS For genotype(isolate) 2a(J6), 3a(S52), 5a(SA13), and 6a(HK6a), we developed culture systems producing supernatant infectivity titers of 3.5-4.0 log₁₀ focus forming units/mL. Against 2a(J6), 5a(SA13), and 6a(HK6a), all inhibitors showed similar efficacy; macrocyclic inhibitors had ~10-fold greater potency than linear inhibitors. However, compared with 2a recombinant J6/JFH1, efficacy against 3a(S52) was 16- to 70-fold lower for macrocyclic inhibitors and 2- to 7-fold lower for linear inhibitors. Testing of additional genotype 2a and 3a isolates showed that these differences were genotype specific. The resistance of 3a isolates was similar to J6/JFH1 with engineered resistance mutations originally observed for genotype 1 patients. In contrast, we found similar efficacy of NS5A inhibitor BMS-790052 and interferon-alfa2. CONCLUSIONS Novel HCV culture systems with genotype specific NS3P/NS4A revealed similar efficacy of protease inhibitors against genotypes 2a, 5a, and 6a and comparatively low but varying efficacy against genotype 3a isolates. These systems will facilitate genotype-specific studies of HCV protease inhibitors and of viral resistance.
The Journal of Infectious Diseases | 2008
Tanja B. Jensen; Judith M. Gottwein; Troels K. H. Scheel; Anne M. Hoegh; Jesper Eugen-Olsen; Jens Bukh
BACKGROUND Recently, a hepatitis C virus (HCV) cell-culture system was developed that employed strain JFH1 (genotype 2a), and JFH1-based intra- and intergenotypic recombinants now permit functional studies of the structural genes (Core, E1, and E2), p7, and NS2 of genotypes 1-4. The goal was to adapt the system to employ genotype 5. METHODS Huh7.5 cells infected with SA13/JFH1, containing Core-NS2 of strain SA13 (genotype 5a), were monitored for Core expression and for supernatant infectivity and HCV-RNA titers. Adaptive mutations of SA13/JFH1 were identified by sequence analysis of recovered genomes and reverse-genetic studies. Receptor blockage was performed with anti-CD81 and anti-SR-BI. For neutralization experiments, SA13/JFH1 or JFH1-based viruses of other genotypes were incubated with patient sera. RESULTS SA13/JFH1 with NS2 and NS3 mutations yielded infectivity titers >10(5) TCID50/mL. Infection with SA13/JFH1 was inhibited by CD81 blocking and SR-BI blocking, respectively, and by preincubation with genotype 5a chronic-phase patient sera. Such sera had varying cross-genotype neutralization potential. However, preincubation and treatment with homologous neutralizing antibodies could not control SA13/JFH1 infection in culture. CONCLUSION The SA13/JFH1 culture permits genotype 5a-specific studies of Core-NS2 function and interfering agents. The ability of HCV to spread in vivo during treatment with neutralizing antibodies was confirmed in vitro.
Antimicrobial Agents and Chemotherapy | 2012
Mohsan Saeed; Troels K. H. Scheel; Judith M. Gottwein; Svetlana Marukian; Lynn B. Dustin; Jens Bukh; Charles M. Rice
ABSTRACT Despite recent advances in the treatment of hepatitis C, the quest for pan-genotype, effective, and well-tolerated inhibitors continues. To facilitate these efforts, it is desirable to have in vitro replication systems for all major HCV genotypes. However, cell culture replication systems exist for only genotypes 1a, 1b, and 2a. In this study, we generated G418-selectable subgenomic replicons for prototype strains of genotypes 3a (S52) and 4a (ED43). Production of G418-resistant colonies by S52 and ED43 in Huh-7.5 cells required the amino acid substitutions S2210I and R2882G, respectively, cell culture adaptive mutations originally reported for genotype 1b replicons. RNA replication was confirmed by quantitative reverse transcription-PCR and detection of viral protein. Sequencing of multiple independent replicon clones revealed the presence of additional nonsynonymous mutations. Interestingly, all potentially adaptive mutations mapped to the NS3 protein. These mutations, when introduced back into original constructs, substantially increased colony formation efficiency. To make these replicons useful for high-throughput screening and evaluation of antiviral compounds, they were modified to express a chimeric fusion protein of firefly luciferase and neomycin phosphotransferase to yield stable replicon-expressing cells. Using these constructs, the inhibitory effects of beta interferon (IFN-β), an NS3 protease inhibitor, and an NS5B nucleoside polymerase inhibitor were readily detected by monitoring luciferase activity. In conclusion, we have established functional replicons for HCV genotypes 3a and 4a, important new additions to the armamentarium required to develop inhibitors with a pan-genotype activity.
Journal of Virology | 2010
Judith M. Gottwein; Troels K. H. Scheel; Benoit Callendret; Yi-Ping Li; Heather B. Eccleston; Ronald E. Engle; Sugantha Govindarajan; William C. Satterfield; Robert H. Purcell; Christopher M. Walker; Jens Bukh
ABSTRACT Previously, RNA transcripts of cDNA clones of hepatitis C virus (HCV) genotypes 1a (strains H77, HCV-1, and HC-TN), 1b (HC-J4, Con1, and HCV-N), and 2a (HC-J6 and JFH1) were found to be infectious in chimpanzees. However, only JFH1 was infectious in human hepatoma Huh7 cells. We performed genetic analysis of HCV genotype 3a (strain S52) and 4a (strain ED43) prototype strains and generated full-length consensus cDNA clones (pS52 and pED43). Transfection of Huh7.5 cells with RNA transcripts of these clones did not yield cells expressing HCV Core. However, intrahepatic transfection of chimpanzees resulted in robust infection with peak HCV RNA titers of ∼5.5 log10 international units (IU)/ml. Genomic consensus sequences recovered from serum at the times of peak viral titers were identical to the sequences of the parental plasmids. Both chimpanzees developed acute hepatitis with elevated liver enzymes and significant necroinflammatory liver changes coinciding with detection of gamma interferon-secreting, intrahepatic T cells. However, the onset and broadness of intrahepatic T-cell responses varied greatly in the two animals, with an early (week 4) multispecific response in the ED43-infected animal (3 weeks before the first evidence of viral control) and a late (week 11) response with limited breadth in the S52-infected animal (without evidence of viral control). Autologous serum neutralizing antibodies were not detected during the acute infection in either animal. Both animals became persistently infected. In conclusion, we generated fully functional infectious cDNA clones of HCV genotypes 3a and 4a. Proof of functionality of all genes might further the development of recombinant cell culture systems for these important genotypes.