Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trond Røvik Størseth is active.

Publication


Featured researches published by Trond Røvik Størseth.


Aquatic Toxicology | 2010

Molecular effects of diethanolamine exposure on Calanus finmarchicus (Crustacea: Copepoda).

Bjørn Henrik Hansen; Dag Altin; Andy M. Booth; Siv-Hege Vang; Max Frenzel; Kristin Rist Sørheim; Odd Gunnar Brakstad; Trond Røvik Størseth

Alkanolamines are surface-active chemicals used in a wide range of industrial, agricultural and pharmaceutical applications and products. Of particular interest is the use of alkanolamines such as diethanolamine (DEA) in the removal of CO(2) from natural gas and for CO(2) capture following fossil fuel combustion. Despite this widespread use, relatively little is known about the ecotoxicological impacts of these compounds. In an attempt to assess the potential effects of alkanolamines in the marine environment, a key species in the North Atlantic, the planktonic copepod Calanus finmarchicus, was studied for molecular effects following sublethal exposure to DEA. DEA-induced alterations in transcriptome and metabolome profiling were assessed using a suppression subtractive hybridization (SSH) gene library method and high resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR), respectively. Effects were observed on transcription of genes reportedly involved in lipid metabolism, antioxidant systems, metal binding, and amino acid and protein catabolism. These effects were accompanied by altered expression of fatty acid derivates, amino acids (threonine, methionine, glutamine, arginine, alanine and leucine) and cholines (choline, phosphocholine and glycerophosphocholine). Together, SSH and HR-MAS NMR offer complementary screening tools for the assessment of molecular responses of C. finmarchicus to DEA and can be used in the study of other chemicals and organisms. Concentration-response and time-response relationships between DEA exposure and single gene transcription were investigated using quantitative PCR. Specific relationships were found between DEA exposure and the transcription of genes involved in protein catabolism (ubiquitin-specific protease-7), metal ion homeostasis (ferritin) and defence against oxidative stress (gamma-glutamylcysteine synthase, glutathione synthase and Cu/Zn-superoxide dismutase). At the lowest alkanolamine concentration used in these experiments, which corresponded to 0.5% of the LC(50) concentration, no transcriptional effects were observed, giving information regarding the lower molecular effect level. Finally, similar transcription patterns were observed for a number of different genes following exposure to DEA, which indicates analogous mechanisms of toxicity and response.


Science of The Total Environment | 2015

Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata

Andy M. Booth; Trond Røvik Størseth; Dag Altin; Anwar Ahniyaz; Harald Jungnickel; Peter Laux; Andreas Luch; Lisbet Sørensen

An aqueous dispersion of poly (acrylic acid)-stabilised cerium oxide (CeO₂) nanoparticles (PAA-CeO₂) was evaluated for its stability in a range of freshwater ecotoxicity media (MHRW, TG 201 and M7), with and without natural organic matter (NOM). In a 15 day dispersion stability study, PAA-CeO₂ did not undergo significant aggregation in any media type. Zeta potential varied between media types and was influenced by PAA-CeO₂ concentration, but remained constant over 15 days. NOM had no influence on PAA-CeO₂ aggregation or zeta potential. The ecotoxicity of the PAA-CeO₂ dispersion was investigated in 72 h algal growth inhibition tests using the freshwater microalgae Pseudokirchneriella subcapitata. PAA-CeO₂ EC₅₀ values for growth inhibition (GI; 0.024 mg/L) were 2-3 orders of magnitude lower than pristine CeO₂ EC₅₀ values reported in the literature. The concentration of dissolved cerium (Ce(3+)/Ce(4+)) in PAA-CeO₂ exposure suspensions was very low, ranging between 0.5 and 5.6 μg/L. Free PAA concentration in the exposure solutions (0.0096-0.0384 mg/L) was significantly lower than the EC10 growth inhibition (47.7 mg/L) value of pure PAA, indicating that free PAA did not contribute to the observed toxicity. Elemental analysis indicated that up to 38% of the total Cerium becomes directly associated with the algal cells during the 72 h exposure. TOF-SIMS analysis of algal cell wall compounds indicated three different modes of action, including a significant oxidative stress response to PAA-CeO₂ exposure. In contrast to pristine CeO₂ nanoparticles, which rapidly aggregate in standard ecotoxicity media, PAA-stabilised CeO₂ nanoparticles remain dispersed and available to water column species. Interaction of PAA with cell wall components, which could be responsible for the observed biomarker alterations, could not be excluded. This study indicates that the increased dispersion stability of PAA-CeO₂ leads to an increase in toxicity compared to pristine non-stabilised forms.


BMC Genomics | 2010

Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome

Ralph Kissen; Per Winge; Diem Hong Thi Tran; Tommy S. Jørstad; Trond Røvik Størseth; Tone Christensen; Atle M. Bones

BackgroundGlutamate plays a central position in the synthesis of a variety of organic molecules in plants and is synthesised from nitrate through a series of enzymatic reactions. Glutamate synthases catalyse the last step in this pathway and two types are present in plants: NADH- or ferredoxin-dependent. Here we report a genome wide microarray analysis of the transcriptional reprogramming that occurs in leaves and roots of the A. thaliana mutant glu1-2 knocked-down in the expression of Fd-GOGAT1 (GLU1; At5g04140), one of the two genes of A. thaliana encoding ferredoxin-dependent glutamate synthase.ResultsTranscriptional profiling of glu1-2 revealed extensive changes with the expression of more than 5500 genes significantly affected in leaves and nearly 700 in roots. Both genes involved in glutamate biosynthesis and transformation are affected, leading to changes in amino acid compositions as revealed by NMR metabolome analysis. An elevated glutamine level in the glu1-2 mutant was the most prominent of these changes. An unbiased analysis of the gene expression datasets allowed us to identify the pathways that constitute the secondary response of an FdGOGAT1/GLU1 knock-down. Among the most significantly affected pathways, photosynthesis, photorespiratory cycle and chlorophyll biosynthesis show an overall downregulation in glu1-2 leaves. This is in accordance with their slight chlorotic phenotype. Another characteristic of the glu1-2 transcriptional profile is the activation of multiple stress responses, mimicking cold, heat, drought and oxidative stress. The change in expression of genes involved in flavonoid biosynthesis is also revealed. The expression of a substantial number of genes encoding stress-related transcription factors, cytochrome P450 monooxygenases, glutathione S-transferases and UDP-glycosyltransferases is affected in the glu1-2 mutant. This may indicate an induction of the detoxification of secondary metabolites in the mutant.ConclusionsAnalysis of the glu1-2 transcriptome reveals extensive changes in gene expression profiles revealing the importance of Fd-GOGAT1, and indirectly the central role of glutamate, in plant development. Besides the effect on genes involved in glutamate synthesis and transformation, the glu1-2 mutant transcriptome was characterised by an extensive secondary response including the downregulation of photosynthesis-related pathways and the induction of genes and pathways involved in the plant response to a multitude of stresses.


Journal of Applied Phycology | 2003

High-resolution magic angle spinning 1H NMR analysis of whole cells of Thalassiosira pseudonana (Bacillariophyceae): Broad range analysis of metabolic composition and nutritional value

Matilde Skogen Chauton; Trond Røvik Størseth; Geir Johnsen

Chemical composition of the microalga Thalassiosira pseudonana Hasle & Heimdalwas studied with different proton nuclearmagnetic resonance (1H NMR)techniques, and by comparing NMR spectrafrom extraction samples with a spectrumfrom a sample of whole cells we show thathigh-resolution magic angle spinning (HRMAS) 1H NMR can be used for broadrange analysis of metabolic composition inmicroalgal whole cells. Signals fromimportant metabolites such aspolyunsaturated fatty acids (PUFAs)eicosapentaenoic (EPA) and docosahexaenoic(DHA) acids were seen in a 1H NMRspectrum of lipophilic extract, andpossibly also signals from the carotenoidfucoxanthin. In a spectrum of hydrophilicextract we assigned signals to amino acidssuch as glutamine (Gln) and glutamic acid(Glu), carbohydrate and ATP. These findingswere compared to a spectrum of HR MAS1H NMR analysis of whole cells, whereit was possible to find signals coincidentwith the different metabolites seen inspectra of the extraction samples. Sincethe position of resonance peaks in a NMRspectrum depends on the chemicalsurroundings of each atom at the time ofanalysis some peak shift differencesbetween extract and whole cell samplespectra may occur, but signal shifts werenot significantly different between theanalyses here. In addition, application ofHR MAS highly increased spectral resolutionin the complex whole cell sample. Wetherefore suggest that HR MAS 1H NMRanalysis is a suitable analysis tool tostudy metabolic composition directly onwhole cells of microalgae, making itpossible to study a broad range ofmetabolites simultaneously without tediousextraction procedures.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2012

Elevated seawater levels of CO2 change the metabolic fingerprint of tissues and hemolymph from the green shore crab Carcinus maenas

Karen Marie Hammer; Sindre Andre Pedersen; Trond Røvik Størseth

Carbon dioxide (CO(2)) acts as a weak acid in water and the increasing level of CO(2) in the atmosphere leads to ocean acidification. In addition, possible leakage from sub-seabed storage of anthropogenic CO(2) may pose a threat to the marine environment. (1)H NMR spectroscopy was applied to extracts of hemolymph, gills and leg muscle from shore crabs (Carcinus maenas) to examine the metabolic response to elevated levels of CO(2). Crabs were exposed to different levels of CO(2)-acidified seawater with pH(NBS) 7.4, 6.6 and 6.3 (pCO(2)~2600, 16,000 and 30,000 μatm, respectively) for two weeks (level-dependent exposure). In addition, the metabolic response was followed for up to 4 weeks of exposure to seawater pH(NBS) 6.9 (pCO(2)~7600 μatm). Partial least squares regression analysis of data showed an increased differentiation between metabolic fingerprints of controls and exposed groups for all sample types with increasing CO(2) levels. Difference between controls and animals subjected to time-dependent exposure appeared after 4 weeks in the hemolymph and gills, and after 48 h of exposure in the leg muscle. Changes in metabolic profiles were mainly due to a reduced level of important intracellular osmolytes such as amino acids (glycine, proline), while the level of other metabolites varied between the different sample types. The results are similar to what is observed in animals exposed to hypo-osmotic stress and may suggest disturbances in intracellular iso-osmotic regulation. The results may also reflect increased catabolism of amino acids to supply the body fluids with proton-buffering ammonia (NH(3)). Alternatively, the findings may reflect an exhaustive effect of CO(2) exposure.


Journal of Phycology | 2004

High-resolution magic angle spinning NMR analysis of whole cells of Chaetoceros muelleri (Bacillariophyceae) and comparison with 13C-NMR and distortionless enhancement by polarization transfer 13C-NMR analysis of lipophilic extracts

Matilde Skogen Chauton; Trond Røvik Størseth; Jostein Krane

Lipid composition in extracted samples of Chaetoceros muelleri Lemmermann was studied with 13C‐NMR and distortionless enhancement by polarization transfer (DEPT) 13C‐NMR, resulting in well‐resolved 13C‐NMR spectra with characteristic resonance signals from carboxylic, olefinic, glyceryl, methylene, and methyl groups. The application of a DEPT pulse sequence aided in the assignment of methylene and methine groups. Resonance signals were compared with literature references, and signal assignment included important unsaturated fatty acids such as eicosapentaenoic and docosahexaenoic and also phospholipids and glycerols. Results from the extracted samples were used to assign resonance signals in a high‐resolution magic angle spinning (HR MAS) DEPT 13C spectrum from whole cells of C. muelleri. The NMR analysis on whole cells yielded equally good information on fatty acids and also revealed signals from carbohydrates and amino acids. Broad resonance signals and peak overlapping can be a problem in whole cell analysis, but we found that application of HR MAS gave a well‐resolved spectrum. The chemical shift of metabolites in an NMR spectrum depends on the actual environment of nuclei during analysis, and some differences could therefore be expected between extracted and whole cell samples. The shift differences were small, and assignment from analysis of lipophilic extract could be used to identify peaks in the whole cell spectrum. HR MAS 13C‐NMR therefore offers a possibility for broad‐range metabolic profiling directly on whole cells, simultaneously detecting metabolites that are otherwise not detected in the same analytical set up and avoiding tedious extraction procedures.


Biology Open | 2015

1H NMR metabolic profiling of cod (Gadus morhua) larvae: potential effects of temperature and diet composition during early developmental stages

Matilde Skogen Chauton; Trine Falck Galloway; Elin Kjørsvik; Trond Røvik Størseth; Velmurugu Puvanendran; Terje van der Meeren; Ørjan Karlsen; Ivar Rønnestad; Kristin Hamre

ABSTRACT Marine aquaculture offers a great source of protein for the increasing human population, and farming of, for example, Atlantic salmon is a global industry. Atlantic cod farming however, is an example of a promising industry where the potential is not yet realized. Research has revealed that a major bottleneck to successful farming of cod is poor quality of the larvae and juveniles. A large research program was designed to increase our understanding of how environmental factors such as temperature and nutrition affects cod larvae development. Data on larvae growth and development were used together with nuclear magnetic resonance. The NMR data indicated that the temperature influenced the metabolome of the larvae; differences were related to osmolytes such as betaine/TMAO, the amino acid taurine, and creatine and lactate which reflect muscle activity. The larvae were fed Artemia from stage 2, and this was probably reflected in a high taurine content of older larvae. Larvae fed with copepods in the nutrition experiment also displayed a high taurine content, together with higher creatine and betaine/TMAO content. Data on the cod larvae metabolome should be coupled to data on gene expression, in order to identify events which are regulated on the genetic level versus regulation resulting from temperature or nutrition during development, to fully understand how the environment affects larval development. Summary: Metabolomic ‘snapshots’ from developing cod larvae reflect the temperature and diet experienced from hatching to juvenile and provide insight into how important processes such as osmoregulation and muscle development might be affected.


Polar Biology | 2013

Metabolic fingerprinting of arctic copepods Calanus finmarchicus , Calanus glacialis and Calanus hyperboreus

Bjørn Henrik Hansen; Kristin F. Degnes; Ida Beathe Øverjordet; Dag Altin; Trond Røvik Størseth

Recent development in high-throughput unbiased analytical tools (transcriptomics, proteomics and metabolomics) has opened the possibility to assess a multitude of molecular endpoints in organisms. In the present work, we used a combination of metabolomics tools, proton nuclear magnetic resonance spectroscopy (1H-NMR) and liquid chromatography coupled with mass spectrometry (LC–MS),) and multivariate statistical analysis to identify species-specific metabolome fingerprints and species-specific metabolites in the three Arctic copepods Calanus finmarchicus, C. glacialis and C. hyperboreus. Principal component analysis separated the three species with high specificity and sensitivity, and some species-specific metabolites were putatively annotated. These tools can be used for future studies within basal biology, systems biology, bioprospecting and ecotoxicology. As a supplementary analytical tool to genetic analyses, species-specific metabolites have a potential to be used to separate closely related Arctic Calanus species from net hauls.


Aquatic Toxicology | 2017

Exposure to crude oil micro-droplets causes reduced food uptake in copepods associated with alteration in their metabolic profiles.

Bjørn Henrik Hansen; Dag Altin; Trond Nordtug; Ida Beathe Øverjordet; Anders J. Olsen; Dan Krause; Ingvild Fladvad Størdal; Trond Røvik Størseth

Acute oil spills and produced water discharges may cause exposure of filter-feeding pelagic organisms to micron-sized dispersed oil droplets. The dissolved oil components are expected to be the main driver for oil dispersion toxicity; however, very few studies have investigated the specific contribution of oil droplets to toxicity. In the present work, the contribution of oil micro-droplet toxicity in dispersions was isolated by comparing exposures to oil dispersions (water soluble fraction with droplets) to concurrent exposure to filtered dispersions (water-soluble fractions without droplets). Physical (coloration) and behavioral (feeding activity) as well as molecular (metabolite profiling) responses to oil exposures in the copepod Calanus finmarchicus were studied. At high dispersion concentrations (4.1-5.6mg oil/L), copepods displayed carapace discoloration and reduced swimming activity. Reduced feeding activity, measured as algae uptake, gut filling and fecal pellet production, was evident also for lower concentrations (0.08mg oil/L). Alterations in metabolic profiles were also observed following exposure to oil dispersions. The pattern of responses were similar between two comparable experiments with different oil types, suggesting responses to be non-oil type specific. Furthermore, oil micro-droplets appear to contribute to some of the observed effects triggering a starvation-type response, manifested as a reduction in metabolite (homarine, acetylcholine, creatine and lactate) concentrations in copepods. Our work clearly displays a relationship between crude oil micro-droplet exposure and reduced uptake of algae in copepods.


Toxicology reports | 2016

Omega-3 and alpha-tocopherol provide more protection against contaminants in novel feeds for Atlantic salmon (Salmo salar L.) than omega-6 and gamma tocopherol

Liv Søfteland; Marc H.G. Berntssen; Jennifer A. Kirwan; Trond Røvik Størseth; Mark R. Viant; Bente E. Torstensen; Rune Waagbø; Pål A. Olsvik

Extended use of plant ingredients in Atlantic salmon farming has increased the need for knowledge on the effects of new nutrients and contaminants in plant based feeds on fish health and nutrient-contaminant interactions. Primary Atlantic salmon hepatocytes were exposed to a mixture of PAHs and pesticides alone or in combination with the nutrients ARA, EPA, α-tocopherol, and γ-tocopherol according to a factorial design. Cells were screened for effects using xCELLigence cytotoxicity screening, NMR spectroscopy metabolomics, mass spectrometry lipidomics and RT-qPCR transcriptomics. The cytotoxicity results suggest that adverse effects of the contaminants can be counteracted by the nutrients. The lipidomics suggested effects on cell membrane stability and vitamin D metabolism after contaminant and fatty acid exposure. Co-exposure of the contaminants with EPA or α-tocopherol contributed to an antagonistic effect in exposed cells, with reduced effects on the VTG and FABP4 transcripts. ARA and γ-tocopherol strengthened the contaminant-induced response, ARA by contributing to an additive and synergistic induction of CYP1A, CYP3A and CPT2, and γ-tocopherol by synergistically increasing ACOX1. Individually EPA and α-tocopherol seemed more beneficial than ARA and γ-tocopherol in preventing the adverse effects induced by the contaminant mixture, though a combination of all nutrients showed the greatest ameliorating effect.

Collaboration


Dive into the Trond Røvik Størseth's collaboration.

Top Co-Authors

Avatar

Matilde Skogen Chauton

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yngvar Olsen

Norwegian University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge