Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Troy M. Herter is active.

Publication


Featured researches published by Troy M. Herter.


Nature Neuroscience | 2005

Random change in cortical load representation suggests distinct control of posture and movement

Isaac Kurtzer; Troy M. Herter; Stephen H. Scott

Accurately maintaining a fixed limb posture and quickly moving between postures underlies both everyday skills, including holding and lifting a cup of coffee, and expert skills, such as an Olympic wrestlers holding and throwing an opponent. A fundamental question in limb motor control is whether the brain manages these contrasting goals of posture and movement through a single, robust control process or whether each engages a specialized control process. We addressed this question by examining how individual neurons in the primary motor cortex of macaque monkeys represent mechanical loads during posture and movement tasks. Notably, approximately half of the neurons that expressed load-related activity did so exclusively during either posture only or movement only. Further, those neurons with load-related activity during both tasks randomly switched their magnitude of response between tasks. These random changes in load representation suggest specialized control processes, one for posture and one for movement.


Neurorehabilitation and Neural Repair | 2010

Quantitative Assessment of Limb Position Sense Following Stroke

Sean P. Dukelow; Troy M. Herter; Kimberly D. Moore; Mary Jo Demers; Janice I. Glasgow; Stephen D. Bagg; Kathleen E. Norman; Stephen H. Scott

Background. Impairment of position sense of the upper extremity (UE) may impede activities of daily living and limit motor gains after stroke. Most clinical assessments of position sense rely on categorical or ordinal ratings by clinicians that lack sensitivity to change or the ability to discriminate subtle deficits. Objective. Use robotic technology to develop a reliable, quantitative technique with a continuous scale to assess UE position sense following stroke. Methods. Forty-five patients recruited from an inpatient stroke rehabilitation service and 65 age-matched healthy controls performed an arm position matching task. Each UE was fitted in the exoskeleton of a KINARM device. One UE was passively placed in one of 9 positions, and the subject was told to match his or her position with the other UE. Patients were compared with statistical distributions of control data to identify those with deficits in UE position sense. Test—retest sessions using 2 raters established interrater reliability. Results. Two thirds of left hemiparetic and one third of right hemiparetic patients had deficits in limb position sense. Left-affected stroke subjects demonstrated significantly more trial-to-trial variability than right-affected or control subjects. The robotic assessment technique demonstrated good interrater reliability but limited agreement with the clinical thumb localizing test. Conclusions. Robotic technology can provide a reliable quantitative means to assess deficits in limb position sense following stroke.


Neurorehabilitation and Neural Repair | 2010

Assessment of Upper-Limb Sensorimotor Function of Subacute Stroke Patients Using Visually Guided Reaching

Angela M Coderre; Amr Abou Zeid; Sean P. Dukelow; Melanie J. Demmer; Kimberly D. Moore; Mary Jo Demers; Helen Bretzke; Troy M. Herter; Janice I. Glasgow; Kathleen E. Norman; Stephen D. Bagg; Stephen H. Scott

Objective. Using robotic technology, we examined the ability of a visually guided reaching task to assess the sensorimotor function of patients with stroke. Methods. Ninety-one healthy participants and 52 with subacute stroke of mild to moderate severity (26 with left- and 26 with right-affected body sides) performed an unassisted reaching task using the KINARM robot. Each participant was assessed using 12 movement parameters that were grouped into 5 attributes of sensorimotor control. Results. A number of movement parameters individually identified a large number of stroke participants as being different from 95% of the controls—most notably initial direction error, which identified 81% of left-affected patients. We also found interlimb differences in performance between the arms of those with stroke compared with controls. For example, whereas only 31% of left-affected participants showed differences in reaction time with their affected arm, 54% showed abnormal interlimb differences in reaction time. Good interrater reliability (r > 0.7) was observed for 9 of the 12 movement parameters. Finally, many stroke patients deemed impaired on the reaching task had been scored 6 or less on the arm portion of the Chedoke-McMaster Stroke Assessment Scale, but some who scored a normal 7 were also deemed impaired in reaching. Conclusions. Robotic technology using a visually guided reaching task can provide reliable information with greater sensitivity about a patient’s sensorimotor impairments following stroke than a standard clinical assessment scale.


Journal of Neuroengineering and Rehabilitation | 2012

The independence of deficits in position sense and visually guided reaching following stroke

Sean P. Dukelow; Troy M. Herter; Stephen D. Bagg; Stephen H. Scott

BackgroundSeveral studies have found correlations between proprioception and visuomotor function during stroke recovery, however two more recent studies have found no correlation. Unfortunately, most of the studies to date have been conducted with clinical assessments of sensation that are observer-based and have poor reliability. We have recently developed new tests to assess position sense and motor function using robotic technology. The present study was conducted to reassess the relationship between position sense and upper limb movement following stroke.MethodsWe assessed position sense and motor performance of 100 inpatient stroke rehabilitation subjects and 231 non-disabled controls. All subjects completed quantitative assessments of position sense (arm-position matching task) and motor performance (visually-guided reaching task) using the KINARM robotic device. Subjects also completed clinical assessments including handedness, vision, Purdue Pegboard, Chedoke-McMaster Stroke Assessment-Impairment Inventory and Functional Independence Measure (FIM). Neuroimaging documented lesion localization. Fisher’s exact probability tests were used to determine the relationship between performances on the arm-position matching and visually-guided reaching task. Pearson’s correlations were conducted to determine the relationship between robotically measured parameters and clinical assessments.ResultsPerformance by individual subjects on the matching and reaching tasks was statistically independent (Fisher’s test, P<0.01). However, performance on the matching and reaching tasks both exhibited relationships with abilities in daily activities as measured by the FIM. Performance on the reaching task also displayed strong relationships with other clinical measures of motor impairment.ConclusionsOur data support the concept that position sense deficits are functionally relevant and point to the importance of assessing proprioceptive and motor impairments independently when planning treatment strategies.


Stroke | 2013

Robotic Identification of Kinesthetic Deficits After Stroke

Jennifer A. Semrau; Troy M. Herter; Stephen H. Scott; Sean P. Dukelow

Background and Purpose— Kinesthesia, the sense of body motion, is essential to proper control and execution of movement. Despite its importance for activities of daily living, no current clinical measures can objectively measure kinesthetic deficits. The goal of this study was to use robotic technology to quantify prevalence and severity of kinesthetic deficits of the upper limb poststroke. Methods— Seventy-four neurologically intact subjects and 113 subjects with stroke (62 left-affected, 51 right-affected) performed a robot-based kinesthetic matching task with vision occluded. The robot moved the most affected arm at a preset speed, direction, and magnitude. Subjects were instructed to mirror-match the movement with their opposite arm (active arm). Results— A large number of subjects with stroke were significantly impaired on measures of kinesthesia. We observed impairments in ability to match movement direction (69% and 49% impaired for left- and right-affected subjects, respectively) and movement magnitude (42% and 31%). We observed impairments to match movement speed (32% and 27%) and increased response latencies (48% and 20%). Movement direction errors and response latencies were related to clinical measures of function, motor recovery, and dexterity. Conclusions— Using a robotic approach, we found that 61% of acute stroke survivors (n=69) had kinesthetic deficits. Additionally, these deficits were highly related to existing clinical measures, suggesting the importance of kinesthesia in day-to-day function. Our methods allow for more sensitive, accurate, and objective identification of kinesthetic deficits after stroke. With this information, we can better inform clinical treatment strategies to improve poststroke rehabilitative care and outcomes.


Journal of Neurophysiology | 2009

Comparison of Neural Responses in Primary Motor Cortex to Transient and Continuous Loads During Posture

Troy M. Herter; Tereza Korbel; Stephen H. Scott

The present study examined whether neurons in primary motor cortex (M1) exhibit similar responses to transient and continuous loads applied during posture. Rapid responses to whole-limb perturbations were examined by transiently applying (300 ms) flexor and extensor torques to the shoulder and/or elbow during postural maintenance. Over half of M1 neurons responded to these transient loads within 80 ms and many responded within 20-40 ms. These rapid responses exhibited a broad continuum of modulation patterns across load directions. At one extreme, neurons exhibited reciprocal increases and decreases in activity for opposing loads. At the other extreme, neurons (particularly those with onset times of 20-40 ms) displayed relatively uniform increases in activity for all loads. Activity of proximal arm muscles displayed a narrower distribution of modulation patterns characterized by broadly tuned excitation combined with little or no reciprocal inhibition. Both neurons and muscles showed a directional preference for whole-limb flexor and whole-limb extensor torques (flexor at one joint and extensor at the other). Most neurons with rapid responses also showed steady-state responses to continuous loads, although these responses generally displayed reciprocal increases and decreases in activity for opposing loads. Importantly, the preferred-torque directions were quantitatively similar across tasks. For example, a neuron with a maximal rapid response to a transient elbow flexor torque tended to exhibit a maximal steady-state response to a continuous elbow flexor torque. Activity of proximal arm muscles also showed this preservation of directional tuning. These results illustrate that M1 neurons respond rapidly to transient multijoint loads and their patterns of activity share some, but not all, features related to continuous multijoint loads applied during posture.


Journal of Neurologic Physical Therapy | 2012

Robotic assessment of sensorimotor deficits after traumatic brain injury.

Chantel T. Debert; Troy M. Herter; Stephen H. Scott; Sean P. Dukelow

Background and Purpose: Robotic technology is commonly used to quantify aspects of typical sensorimotor function. We evaluated the feasibility of using robotic technology to assess visuomotor and position sense impairments following traumatic brain injury (TBI). We present results of robotic sensorimotor function testing in 12 subjects with TBI, who had a range of initial severities (9 severe, 2 moderate, 1 mild), and contrast these results with those of clinical tests. We also compared these with robotic test outcomes in persons without disability. Methods: For each subject with TBI, a review of the initial injury and neuroradiologic findings was conducted. Following this, each subject completed a number of standardized clinical measures (Fugl-Meyer Assessment, Purdue Peg Board, Montreal Cognitive Assessment, Rancho Los Amigos Scale), followed by two robotic tasks. A visually guided reaching task was performed to assess visuomotor control of the upper limb. An arm position-matching task was used to assess position sense. Robotic task performance in the subjects with TBI was compared with findings in a cohort of 170 person without disabilities. Results: Subjects with TBI demonstrated a broad range of sensory and motor deficits on robotic testing. Notably, several subjects with TBI displayed significant deficits in one or both of the robotic tasks, despite normal scores on traditional clinical motor and cognitive assessment measures. Discussion and Conclusions: The findings demonstrate the potential of robotic assessments for identifying deficits in visuomotor control and position sense following TBI. Improved identification of neurologic impairments following TBI may ultimately enhance rehabilitation.


Journal of Neuroengineering and Rehabilitation | 2014

A robotic object hitting task to quantify sensorimotor impairments in participants with stroke

Kathrin Tyryshkin; Angela M Coderre; Janice I. Glasgow; Troy M. Herter; Stephen D. Bagg; Sean P. Dukelow; Stephen H. Scott

BackgroundExisting clinical scores of upper limb function often use observer-based ordinal scales that are subjective and commonly have floor and ceiling effects. The purpose of the present study was to develop an upper limb motor task to assess objectively the ability of participants to select and engage motor actions with both hands.MethodsA bilateral robotic system was used to quantify upper limb sensorimotor function of participants with stroke. Participants performed an object hit task that required them to hit virtual balls moving towards them in the workspace with virtual paddles attached to each hand. Task difficulty was initially low, but increased with time by increasing the speed and number of balls in the workspace. Data were collected from 262 control participants and 154 participants with recent stroke.ResultsControl participants hit ~60 to 90% of the 300 balls with relatively symmetric performance for the two arms. Participants with recent stroke performed the task with most participants hitting fewer balls than 95% of healthy controls (67% of right-affected and 87% of left-affected strokes). Additionally, nearly all participants (97%) identified with visuospatial neglect hit fewer balls than healthy controls. More detailed analyses demonstrated that most participants with stroke displayed asymmetric performance between their affected and non-affected limbs with regards to number of balls hit, workspace area covered by the limb and hand speed. Inter-rater reliability of task parameters was high with half of the correlations above 0.90. Significant correlations were observed between many of the task parameters and the Functional Independence Measure and/or the Behavioural Inattention Test.ConclusionsAs this object hit task requires just over two minutes to complete, it provides an objective and easy approach to quantify upper limb motor function and visuospatial skills following stroke.


Journal of Neuroengineering and Rehabilitation | 2014

Systematic changes in position sense accompany normal aging across adulthood

Troy M. Herter; Stephen H. Scott; Sean P. Dukelow

BackgroundDevelopment of clinical neurological assessments aimed at separating normal from abnormal capabilities requires a comprehensive understanding of how basic neurological functions change (or do not change) with increasing age across adulthood. In the case of proprioception, the research literature has failed to conclusively determine whether or not position sense in the upper limb deteriorates in elderly individuals. The present study was conducted a) to quantify whether upper limb position sense deteriorates with increasing age, and b) to generate a set of normative data that can be used for future comparisons with clinical populations.MethodsWe examined position sense in 209 healthy males and females between the ages of 18 and 90 using a robotic arm position-matching task that is both objective and reliable. In this task, the robot moved an arm to one of nine positions and subjects attempted to mirror-match that position with the opposite limb. Measures of position sense were recorded by the robotic apparatus in hand-and joint-based coordinates, and linear regressions were used to quantify age-related changes and percentile boundaries of normal behaviour. For clinical comparisons, we also examined influences of sex (male versus female) and test-hand (dominant versus non-dominant) on all measures of position sense.ResultsAnalyses of hand-based parameters identified several measures of position sense (Variability, Shift, Spatial Contraction, Absolute Error) with significant effects of age, sex, and test-hand. Joint-based parameters at the shoulder (Absolute Error) and elbow (Variability, Shift, Absolute Error) also exhibited significant effects of age and test-hand.ConclusionsThe present study provides strong evidence that several measures of upper extremity position sense exhibit declines with age. Furthermore, this data provides a basis for quantifying when changes in position sense are related to normal aging or alternatively, pathology.


Stroke | 2015

Examining Differences in Patterns of Sensory and Motor Recovery After Stroke With Robotics

Jennifer A. Semrau; Troy M. Herter; Stephen H. Scott; Sean P. Dukelow

Background and Purpose— Developing a better understanding of the trajectory and timing of stroke recovery is critical for developing patient-centered rehabilitation approaches. Here, we quantified proprioceptive and motor deficits using robotic technology during the first 6 months post stroke to characterize timing and patterns in recovery. We also make comparisons of robotic assessments to traditional clinical measures. Methods— One hundred sixteen subjects with unilateral stroke were studied at 4 time points: 1, 6, 12, and 26 weeks post stroke. Subjects performed robotic assessments of proprioceptive (position sense and kinesthesia) and motor function (unilateral reaching task and bimanual object hit task), as well as several clinical measures (Functional Independence Measure, Purdue Pegboard, and Chedoke-McMaster Stroke Assessment). Results— One week post stroke, many subjects displayed proprioceptive (48% position sense and 68% kinesthesia) and motor impairments (80% unilateral reaching and 85% bilateral movement). Interindividual recovery on robotic measures was highly variable. However, we characterized recovery as early (normal by 6 weeks post stroke), late (normal by 26 weeks post stroke), or incomplete (impaired at 26 weeks post stroke). Proprioceptive and motor recovery often followed different timelines. Across all time points, robotic measures were correlated with clinical measures. Conclusions— These results highlight the need for more sensitive, targeted identification of sensory and motor deficits to optimize rehabilitation after stroke. Furthermore, the trajectory of recovery for some individuals with mild to moderate stroke may be much longer than previously considered.

Collaboration


Dive into the Troy M. Herter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac Kurtzer

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar

Stacy L. Fritz

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Daniel Guitton

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Andrew Pruszynski

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge