Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Troy R. Torgerson is active.

Publication


Featured researches published by Troy R. Torgerson.


Current Opinion in Rheumatology | 2003

Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis

Eleonora Gambineri; Troy R. Torgerson; Hans D. Ochs

Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX) is one of a group of clinical syndromes that present with multisystem autoimmune disease suggesting a phenotype of immune dysregulation. Clinically, IPEX manifests most commonly with diarrhea, insulin-dependent diabetes mellitus, thyroid disorders, and eczema. FOXP3, the gene responsible for IPEX, maps to chromosome Xp11.23-Xq13.3 and encodes a putative DNA-binding protein of the forkhead family. Recent data indicate that FOXP3 is expressed primarily in the CD4+CD25+ regulatory T-cell subset, where it may function as a transcriptional repressor and key modulator of regulatory T-cell fate and function. This review describes the clinical features of IPEX and the structure, function, and known mutations of FOXP3 that provide important insights into its role in maintenance of immune homeostasis.


The New England Journal of Medicine | 2014

Early-onset stroke and vasculopathy associated with mutations in ADA2

Qing Zhou; Dan Yang; Amanda K. Ombrello; Andrey Zavialov; Camilo Toro; Anton V. Zavialov; Deborah L. Stone; Jae Jin Chae; Sergio D. Rosenzweig; Kevin Bishop; Karyl S. Barron; Hye Sun Kuehn; Patrycja Hoffmann; Alejandra Negro; Wanxia L. Tsai; Edward W. Cowen; Wuhong Pei; Joshua D. Milner; Christopher Silvin; Theo Heller; David T. Chin; Nicholas J. Patronas; John S. Barber; Chyi-Chia R. Lee; Geryl Wood; Alexander Ling; Susan J. Kelly; David E. Kleiner; James C. Mullikin; Nancy J. Ganson

BACKGROUND We observed a syndrome of intermittent fevers, early-onset lacunar strokes and other neurovascular manifestations, livedoid rash, hepatosplenomegaly, and systemic vasculopathy in three unrelated patients. We suspected a genetic cause because the disorder presented in early childhood. METHODS We performed whole-exome sequencing in the initial three patients and their unaffected parents and candidate-gene sequencing in three patients with a similar phenotype, as well as two young siblings with polyarteritis nodosa and one patient with small-vessel vasculitis. Enzyme assays, immunoblotting, immunohistochemical testing, flow cytometry, and cytokine profiling were performed on samples from the patients. To study protein function, we used morpholino-mediated knockdowns in zebrafish and short hairpin RNA knockdowns in U937 cells cultured with human dermal endothelial cells. RESULTS All nine patients carried recessively inherited mutations in CECR1 (cat eye syndrome chromosome region, candidate 1), encoding adenosine deaminase 2 (ADA2), that were predicted to be deleterious; these mutations were rare or absent in healthy controls. Six patients were compound heterozygous for eight CECR1 mutations, whereas the three patients with polyarteritis nodosa or small-vessel vasculitis were homozygous for the p.Gly47Arg mutation. Patients had a marked reduction in the levels of ADA2 and ADA2-specific enzyme activity in the blood. Skin, liver, and brain biopsies revealed vasculopathic changes characterized by compromised endothelial integrity, endothelial cellular activation, and inflammation. Knockdown of a zebrafish ADA2 homologue caused intracranial hemorrhages and neutropenia - phenotypes that were prevented by coinjection with nonmutated (but not with mutated) human CECR1. Monocytes from patients induced damage in cocultured endothelial-cell layers. CONCLUSIONS Loss-of-function mutations in CECR1 were associated with a spectrum of vascular and inflammatory phenotypes, ranging from early-onset recurrent stroke to systemic vasculopathy or vasculitis. (Funded by the National Institutes of Health Intramural Research Programs and others.).


The Journal of Allergy and Clinical Immunology | 2008

Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome

Ellen D. Renner; Stacey Rylaarsdam; Stephanie Aňover-Sombke; Anita Rack; Janine Reichenbach; John C. Carey; Qili Zhu; Annette Jansson; Julia Barboza; Lena F. Schimke; M. Leppert; Melissa M. Getz; Reinhard Seger; Harry R. Hill; Bernd H. Belohradsky; Troy R. Torgerson; Hans D. Ochs

BACKGROUND Hyper-IgE syndrome (HIES) is a rare, autosomal-dominant immunodeficiency characterized by eczema, Staphylococcus aureus skin abscesses, pneumonia with pneumatocele formation, Candida infections, and skeletal/connective tissue abnormalities. Recently it was shown that heterozygous signal transducer and activator of transcription 3 (STAT3) mutations cause autosomal-dominant HIES. OBJECTIVE To determine the spectrum and functional consequences of heterozygous STAT3 mutations in a cohort of patients with HIES. METHODS We sequenced the STAT3 gene in 38 patients with HIES (National Institutes of Health score >40 points) from 35 families, quantified T(H)17 cells in peripheral blood, and evaluated tyrosine phosphorylation of STAT3. RESULTS Most STAT3 mutations in our cohort were in the DNA-binding domain (DBD; 22/35 families) or Src homology 2 (SH2) domain (10/35) and were missense mutations. We identified 2 intronic mutations resulting in exon skipping and in-frame deletions within the DBD. In addition, we identified 2 mutations located in the transactivation domain downstream of the SH2 domain: a 10-amino acid deletion and an amino acid substitution. In 1 patient, we were unable to identify a STAT3 mutation. T(H)17 cells were absent or low in the peripheral blood of all patients who were evaluated (n = 17). IL-6-induced STAT3-phosphorylation was consistently reduced in patients with SH2 domain mutations but comparable to normal controls in patients with mutations in the DBD. CONCLUSION Heterozygous STAT3 mutations were identified in 34 of 35 unrelated HIES families. Patients had impaired T(H)17 cell development, and those with SH2 domain mutations had reduced STAT3 phosphorylation.


Journal of Immunology | 2006

Analysis of FOXP3 Reveals Multiple Domains Required for Its Function as a Transcriptional Repressor

Jared E. Lopes; Troy R. Torgerson; Lisa A. Schubert; Stephanie Anover; Elizabeth Ocheltree; Hans D. Ochs; Steven F. Ziegler

Foxp3 has been shown to be both necessary and sufficient for the development and function of naturally arising CD4+CD25+ regulatory T cells in mice. Mutation of Foxp3 in Scurfy mice and FOXP3 in humans with IPEX results in fatal, early onset autoimmune disease and demonstrates the critical role of FOXP3 in maintaining immune homeostasis. The FOXP3 protein encodes several functional domains, including a C2H2 zinc finger, a leucine zipper, and a winged-helix/forkhead (FKH) domain. We have shown previously that FOXP3 functions as a transcriptional repressor and inhibits activation-induced IL-2 gene transcription. To characterize the role of each predicted functional domain on the in vivo activity of FOXP3, we have evaluated the location of point mutations identified in a large cohort of patients with the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) and found them to cluster primarily within the FKH domain and the leucine zipper, but also present within the poorly defined N-terminal portion of the protein. The molecular functions of each of the IPEX-targeted domains were investigated. We show that FOXP3 is constitutively localized to the nucleus and this localization requires sequences at both the amino and C-terminal ends of its FKH domain. Moreover, FOXP3 was found to homodimerize through its leucine zipper. We also identify a novel functional domain within the N-terminal half of FOXP3, which is required for FOXP3-mediated repression of transcription from both a constitutively active and a NF-AT-inducible promoter. Furthermore, we demonstrate that IPEX mutations in these domains correlate with deficiencies in FOXP3 repressor function, corroborating their in vivo relevance.


Immunological Reviews | 2005

FOXP3 acts as a rheostat of the immune response

Hans D. Ochs; Steven F. Ziegler; Troy R. Torgerson

Summary:  The study of a rare human X‐linked disease resulting in a characteristic clinical phenotype of multiple autoimmune disorders and the in‐depth exploration of a spontaneous mouse model, scurfy (sf), have contributed to a better understanding of the regulation of immunologic responses, particularly to self. Forkhead box P3 (FOXP3), the gene responsible for IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X‐linked) and sf is located on the X chromosome and is of crucial importance for the generation of CD4+CD25+ regulatory T cells. Loss of FOXP3 function and the resultant lack of regulatory T cells result in lethal auto‐aggressive lymphoproliferation, whereas overexpression of this modulator results in severe immunodeficiency. The in‐depth analysis of FOXP3 regulation and elucidation of the precise mechanisms by which FOXP3 exerts its regulatory effect will provide important insights into the understanding of autoimmunity and should predictably result in new therapeutic possibilities.


Emerging Infectious Diseases | 2010

Astrovirus Encephalitis in Boy with X-linked Agammaglobulinemia

Phenix Lan Quan; Thor A. Wagner; Thomas Briese; Troy R. Torgerson; Mady Hornig; Alla Tashmukhamedova; Cadhla Firth; Gustavo Palacios; Ada Baisre-de-Leon; Christopher D. Paddock; Stephen K. Hutchison; Michael Egholm; Sherif R. Zaki; James E. Goldman; Hans D. Ochs; W. Ian Lipkin

Unbiased pyrosequencing detected an astrovirus after conventional methods failed to identify the causative agent.


The Journal of Allergy and Clinical Immunology | 2013

Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation–polyendocrinopathy–enteropathy–X-linked–like syndrome

Gulbu Uzel; Elizabeth P. Sampaio; Monica G. Lawrence; Amy P. Hsu; Mary J. Hackett; Morna J. Dorsey; Richard J. Noel; James W. Verbsky; Alexandra F. Freeman; Erin Janssen; Francisco A. Bonilla; Joseph Pechacek; Prabha Chandrasekaran; Sarah K. Browne; Anahita Agharahimi; Ahmed M. Gharib; Sara Ciullini Mannurita; Jae Joon Yim; Eleonora Gambineri; Troy R. Torgerson; Dat Q. Tran; Joshua D. Milner; Steven M. Holland

BACKGROUND Mutations in signal transducer and activator of transcription (STAT) 1 cause a broad spectrum of disease, ranging from severe viral and bacterial infections (amorphic alleles) to mild disseminated mycobacterial disease (hypomorphic alleles) to chronic mucocutaneous candidiasis (CMC; hypermorphic alleles). The hypermorphic mutations are also associated with arterial aneurysms, autoimmunity, and squamous cell cancers. OBJECTIVE We sought to investigate the role of STAT1 gain-of-function mutations in phenotypes other than CMC. METHODS We initially screened patients with CMC and autoimmunity for STAT1 mutations. We functionally characterized mutations in vitro and studied immune profiles and regulatory T (Treg) cells. After our initial case identifications, we explored 2 large cohorts of patients with wild-type forkhead box protein 3 and an immune dysregulation-polyendocrinopathy-enteropathy-X-linked (IPEX)-like phenotype for STAT1 mutations. RESULTS We identified 5 children with polyendocrinopathy, enteropathy, and dermatitis reminiscent of IPEX syndrome; all but 1 had a variety of mucosal and disseminated fungal infections. All patients lacked forkhead box protein 3 mutations but had uniallelic STAT1 mutations (c.629 G>T, p.R210I; c.1073 T>G, p.L358W, c.796G>A; p.V266I; c.1154C>T, T385M [2 patients]). STAT1 phosphorylation in response to IFN-γ, IL-6, and IL-21 was increased and prolonged. CD4(+) IL-17-producing T-cell numbers were diminished. All patients had normal Treg cell percentages in the CD4(+) T-cell compartment, and their function was intact in the 2 patients tested. Patients with cells available for study had normal levels of IL-2-induced STAT5 phosphorylation. CONCLUSIONS Gain-of-function mutations in STAT1 can cause an IPEX-like phenotype with normal frequency and function of Treg cells.


Journal of Clinical Investigation | 2007

Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis

Stéphanie Humblet-Baron; Blythe Sather; Stephanie Anover; Shirly Becker-Herman; Debora J. Kasprowicz; Socheath Khim; Thuc Nguyen; Kelly Hudkins-Loya; Charles E. Alpers; Steve F. Ziegler; Hans D. Ochs; Troy R. Torgerson; Daniel J. Campbell; David J. Rawlings

Wiskott-Aldrich syndrome protein (WASp) is essential for optimal T cell activation. Patients with WAS exhibit both immunodeficiency and a marked susceptibility to systemic autoimmunity. We investigated whether alterations in Treg function might explain these paradoxical observations. While WASp-deficient (WASp(-/-)) mice exhibited normal thymic Treg generation, the competitive fitness of peripheral Tregs was severely compromised. The total percentage of forkhead box P3-positive (Foxp3(+)) Tregs among CD4(+) T cells was reduced, and WASp(-/-) Tregs were rapidly outcompeted by WASp(+) Tregs in vivo. These findings correlated with reduced expression of markers associated with self-antigen-driven peripheral Treg activation and homing to inflamed tissue. Consistent with these findings, WASp(-/-) Tregs showed a reduced ability to control aberrant T cell activation and autoimmune pathology in Foxp3(-/-)Scurfy (sf) mice. Finally, WASp(+) Tregs exhibited a marked selective advantage in vivo in a WAS patient with a spontaneous revertant mutation, indicating that altered Treg fitness likely explains the autoimmune features in human WAS.


Blood | 2011

Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study.

Daniele Moratto; Silvia Giliani; Carmem Bonfim; Evelina Mazzolari; Alain Fischer; Hans D. Ochs; Andrew J. Cant; Adrian J. Thrasher; Morton J. Cowan; Michael H. Albert; Trudy N. Small; Sung-Yun Pai; Elie Haddad; Antonella Lisa; Sophie Hambleton; Mary Slatter; Marina Cavazzana-Calvo; Nizar Mahlaoui; Capucine Picard; Troy R. Torgerson; Lauri Burroughs; Adriana Koliski; José Zanis Neto; Fulvio Porta; Waseem Qasim; Paul Veys; Kristina Kavanau; Manfred Hönig; Ansgar Schulz; Wilhelm Friedrich

In this retrospective collaborative study, we have analyzed long-term outcome and donor cell engraftment in 194 patients with Wiskott-Aldrich syndrome (WAS) who have been treated by hematopoietic cell transplantation (HCT) in the period 1980- 2009. Overall survival was 84.0% and was even higher (89.1% 5-year survival) for those who received HCT since the year 2000, reflecting recent improvement of outcome after transplantation from mismatched family donors and for patients who received HCT from an unrelated donor at older than 5 years. Patients who went to transplantation in better clinical conditions had a lower rate of post-HCT complications. Retrospective analysis of lineage-specific donor cell engraftment showed that stable full donor chimerism was attained by 72.3% of the patients who survived for at least 1 year after HCT. Mixed chimerism was associated with an increased risk of incomplete reconstitution of lymphocyte count and post-HCT autoimmunity, and myeloid donor cell chimerism < 50% was associated with persistent thrombocytopenia. These observations indicate continuous improvement of outcome after HCT for WAS and may have important implications for the development of novel protocols aiming to obtain full correction of the disease and reduce post-HCT complications.


Journal of Clinical Immunology | 2008

Primary Immune Deficiency Disorders Presenting as Autoimmune Diseases: IPEX and APECED

Dewton Moraes-Vasconcelos; Beatriz Tavares Costa-Carvalho; Troy R. Torgerson; Hans D. Ochs

BackgroundSeveral primary immune deficiency disorders are associated with autoimmunity and malignancy, suggesting a state of immune dysregulation. The concept of immune dysregulation as a direct cause of autoimmunity in primary immune deficiency disorders (PIDDs) has been strengthened by the recent discovery of distinct clinical entities linked to single-gene defects resulting in multiple autoimmune phenomena including immune dysregulation, polyendocrinopathy, enteropathy and X-linked (IPEX) syndrome, and autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy (APECED) syndrome.ConclusionReviewing recent advances in our understanding of the small subgroup of PIDD patients with defined causes for autoimmunity may lead to the development of more effective treatment strategies for idiopathic human autoimmune diseases.

Collaboration


Dive into the Troy R. Torgerson's collaboration.

Researchain Logo
Decentralizing Knowledge