Trude G. Simonsen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Trude G. Simonsen.
Radiation Research | 2009
Tormod A.M. Egeland; Trude G. Simonsen; Jon Vidar Gaustad; Kristine Gulliksrud; Christine Ellingsen; Einar K. Rofstad
Abstract Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested to be a valuable method for characterizing the physiological microenvironment of tumors and thus a promising method for individualizing cancer treatment. The aim of this study was to test the hypothesis that valid parametric images of the tumor microenvironment can be obtained by pharmacokinetic analysis of DCE-MRI series. Cells of four human melanoma xenograft lines (A-07, D-12, R-18 and T-22) were used as preclinical models of human cancer. DCE-MRI was performed at 1.5 T at a spatial resolution of 0.23 × 0.47 × 2.0 mm3 and a time resolution of 14 s. Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) was used as contrast agent. The DCE-MRI data were analyzed on a voxel-by-voxel basis by using a pharmacokinetic model recommended for analysis of clinical DCE-MRI series. Parametric DCE-MR images were compared with tumor blood perfusion measured by the 86Rb uptake method, and fractional volume of the extravascular extracellular space assessed by analysis of histological preparations. Parametric images reflecting tumor blood perfusion and fractional volume of the extravascular extracellular space were obtained. The numerical values of the DCE-MRI-derived parameters were not significantly different from the absolute values of tumor blood perfusion or fractional volume of the extravascular extracellular space in any of the tumor lines. This study shows that DCE-MRI can provide valid quantitative parametric images of the tumor microenvironment in preclinical cancer models and thus supports the suggestion that DCE-MRI may be developed to be a clinically useful method for individualization of microenvironment-based cancer treatment, a possibility that merits increased clinical interest.
Radiotherapy and Oncology | 2015
Kjersti V. Lund; Trude G. Simonsen; Tord Hompland; Gunnar B. Kristensen; Einar K. Rofstad
BACKGROUND AND PURPOSE Several investigators have indicated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has the potential to provide biomarkers for personalized treatment of cervical carcinoma. However, some clinical studies have suggested that treatment failure is associated with low tumor signal enhancement, whereas others have reported associations between high signal enhancement and poor outcome. The purpose of this investigation was to clear up these conflicting reports and to provide a method for identifying biomarkers that easily can be implemented in routine DCE-MRI diagnostics. METHODS The study involved 85 patients (FIGO stage IB through IVA) treated with concurrent chemoradiotherapy. Low-enhancing tumor volume (LETV) and low-enhancing tumor fraction (LETF), defined as the volume and fractional volume of low-enhancing voxels, respectively, were calculated from signal intensities recorded within 1 min after contrast administration by using two methods reported to give conflicting conclusions. RESULTS Multivariate analysis involving tumor volume, lymph node status, FIGO stage, and LETV or LETF revealed that LETV and LETF provided independent prognostic information on treatment outcome, independent of the method of calculation. CONCLUSION Low signal enhancement is associated with poor prognosis in cervical carcinoma, and biomarkers predicting poor outcome can be provided by short-term DCE-MRI without advanced image analysis.
Microvascular Research | 2013
Jon Vidar Gaustad; Trude G. Simonsen; Ana Maria Acosta Roa; Einar K. Rofstad
The purpose of this study was to investigate the effect of acute cyclic hypoxia on tumor vasculature. A-07 human melanoma xenografts growing in dorsal window chambers were used as tumor model. Acute cyclic hypoxia was induced by periodically exposing tumor-bearing mice to a low oxygen atmosphere. The hypoxia treatment consisted of 12 cycles of 10 min of low O(2) (8% O(2) in N(2)) followed by 10 min of air for a total of 4 hr. The treatment started the first day after tumor initiation, and was given daily for 9 days. Vascular morphology was assessed from high-resolution transillumination images, and tumor blood supply was assessed from first-pass imaging movies recorded after a bolus of 155 kDa tetramethylrhodamine isothiocyanate-labeled dextran had been administered intravenously. Hypoxia-treated tumors showed increased vessel density, decreased interstitial distance, and delayed blood supply compared to control tumors. The increase in vessel density was attributed to an increased number of small vessels. In conclusion, acute cyclic hypoxia induced angiogenesis in A-07 tumors resulting in increased density of small-diameter vessels and delayed tumor blood supply.
International Journal of Radiation Oncology Biology Physics | 2010
Trude G. Simonsen; Jon Vidar Gaustad; Einar K. Rofstad
PURPOSE Hypoxic regions have been shown to be a characteristic feature of a wide variety of human primary tumors, whereas the oxygenation status of subclinical micrometastases is in general unknown. The development of hypoxia in a xenograft model of microscopic metastases was investigated in this study. METHODS AND MATERIALS U-25-GFP human melanomas growing in dorsal window chamber preparations in BALB/c nu/nu mice were used as a preclinical model of micrometastases. Tumor blood supply time and morphologic parameters of the vascular network were determined from first-pass imaging movies and vascular maps recorded by use of 155-kDa tetramethylrhodamine isothiocyanate-labeled dextran as a vascular tracer. Tumor hypoxia was assessed from immunohistochemical preparations of the imaged tissue by use of pimonidazole as a hypoxia marker. RESULTS Nearly half of the tumors had developed hypoxic regions when they reached a diameter of 2 to 3 mm. Tumors with multiple hypoxic foci showed a low growth rate, low blood flow velocity, high vessel tortuosity, high vessel segment length, and high vascular density, whereas tumors with a single hypoxic region showed a high growth rate, high blood flow velocity, low vessel tortuosity, low vessel segment length, and low vascular density. The tumors with hypoxic regions did not differ from those without hypoxia in any single parameter. CONCLUSIONS U-25-GFP xenograft models of vascularized human tumor micrometastases may develop hypoxic regions as a consequence of two distinctly different morphologic abnormalities in the vascular network: high resistance against blood flow (i.e., high vessel tortuosity and high vessel segment length) or low vascular density.
Microvascular Research | 2012
Jon Vidar Gaustad; Trude G. Simonsen; Marit N. Leinaas; Einar K. Rofstad
The purpose of this study was to establish a lymphangiography assay allowing repetitive imaging of tumor-associated lymphatics, and to investigate potential associations between tumor-induced changes in pre-existing lymphatics and tumor angiogenesis. A-07-GFP human melanoma xenografts grown in dorsal window chambers were used as preclinical tumor model. Lymphatics were visualized after multiple intradermal injections of 155 kDa tetramethylrhodamine isothiocyanate dextran outside the window chambers, and tumor vasculature was assessed from high-resolution transillumination images. Lymphangiography was performed thrice in window chambers with or without A-07-GFP tumors, with 3-4 days between repetitions. The lymphangiography assay was highly reproducible. A-07-GFP tumors induced dilation of pre-existing lymphatics after the onset of tumor angiogenesis, and the dilation was correlated with tumor size.
Acta Oncologica | 2017
Catherine Sem Wegner; Anette Hauge; Jon Vidar Gaustad; Lise Mari K. Andersen; Trude G. Simonsen; Kanthi Galappathi; Einar K. Rofstad
Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor outcome. Resistance to treatment is associated with impaired vascularity, extensive hypoxia, and interstitial hypertension. In this study, the potential of dynamic contrast-enhanced (DCE)-MRI as a method for assessing the microvascular density (MVD), the fraction of hypoxic tissue, and the interstitial fluid pressure (IFP) of PDACs was investigated. Material and methods: Intramuscular BxPC-3, Capan-2, MIAPaCa-2, and Panc-1 PDAC xenografts were used as preclinical models of human PDACs. DCE-MRI with Gd-DOTA as contrast agent was conducted with a 7.05-T scanner, and the DCE-MRI series were analyzed voxelwise by using the Tofts pharmacokinetic model. Tumor MVD and hypoxia were measured in histological preparations by using pimonidazole as a hypoxia marker and CD31 as a marker of endothelial cells. IFP was measured with a Millar catheter. Results: Ktrans (the volume transfer constant of Gd-DOTA) increased with increasing MVD and decreased with increasing hypoxic fraction, but was not associated with IFP. Any association between ve (the fractional distribution volume of Gd-DOTA) and MVD, hypoxic fraction, or IFP could not be detected. Conclusions: This study shows that DCE-MRI is a useful modality for assessing important features of the microenvironment of PDAC xenografts and thus provides the basis for future preclinical and clinical DCE-MRI investigations of PDAC.
Oncotarget | 2016
Jon Vidar Gaustad; Trude G. Simonsen; Lise Mari K. Andersen; Einar K. Rofstad
In this study, the effect of properdistatin, a novel peptide derived from the thrombospondin 1 (TSP-1) domain of properdin, was investigated in three melanoma xenograft models with different TSP-1 expression. The tumors were grown in dorsal window chambers and were treated with 80 mg/kg/day properdistatin or vehicle. Morphological parameters of the tumor vasculature were assessed from high resolution transillumination images. Blood supply time (i.e., the time required for arterial blood to flow from a supplying artery to downstream microvessels) and plasma velocities were assessed from first-pass imaging movies recorded after a bolus of fluorescence-labeled dextran had been administered intravenously. Gene and protein expression of TSP-1 were assessed with quantitative PCR and immunohistochemistry, respectively. Properdistatin treatment inhibited angiogenesis in low TSP-1 expressing tumors but did not alter the vasculature in high TSP-1 expressing tumors. In low TSP-1 expressing tumors, properdistatin selectively removed small-diameter capillaries, but did not change the morphology of tumor arterioles or tumor venules. Properdistatin also reduced blood supply times and increased plasma velocities, implying that the treatment reduced the geometric resistance to blood flow and improved vascular function.
Microvascular Research | 2013
Trude G. Simonsen; Jon Vidar Gaustad; Marit N. Leinaas; Einar K. Rofstad
The efficacy of most cancer treatments is strongly influenced by the tumor blood supply. The results of experimental studies using xenografted tumors to evaluate novel cancer treatments may therefore vary considerably depending on the blood supply of the specific tumor model being used. Mechanisms underlying intertumor heterogeneity in the blood supply of xenografted tumors derived from same tumor line are poorly understood, and were investigated here by using intravital microscopy to assess tumor blood supply and vascular morphology in human melanomas growing in dorsal window chambers in BALB/c nu/nu mice. Two melanoma lines, A-07 and R-18, were included in the study. These lines differed substantially in angiogenic profiles. Thus, when the expression of 84 angiogenesis-related genes was investigated with a quantitative PCR array, 25% of these genes showed more than a 10-fold difference in expression. Furthermore, A-07 tumors showed higher vascular density, higher vessel tortuosity, higher vessel diameters, shorter vessel segments, and more chaotic vascular architecture than R-18 tumors. Both lines showed large intertumor heterogeneity in blood supply. In the A-07 line, tumors with low microvascular density, long vessel segment, and high vessel tortuosity showed poor blood supply, whereas in the R-18 line, poor tumor blood supply was associated with low tumor arteriolar diameters. Thus, tumor-line specific causes of intertumor heterogeneity in blood supply were identified in human melanoma xenografts, and these tumor-line specific mechanisms were possibly a result of tumor-line specific angiogenic profiles.
Radiotherapy and Oncology | 2012
Trude G. Simonsen; Jon Vidar Gaustad; Marit N. Leinaas; Einar K. Rofstad
BACKGROUND AND PURPOSE The fraction of hypoxic cells has been shown to differ substantially among human tumors of the same histological type. In this study, a window chamber model was used to identify possible mechanisms leading to the development of highly different hypoxic fractions in A-07 and R-18 human melanoma xenografts. MATERIALS AND METHODS Chronic and acute hypoxia was assessed in intradermal tumors using an immunohistochemical and a radiobiological assay. Functional and morphological parameters of the vascular networks of tumors growing in dorsal window chambers were assessed with intravital microscopy. RESULTS R-18 tumors showed significantly higher hypoxic fractions than A-07 tumors, and the difference was mostly due to acute hypoxia. Compared to A-07 tumors, R-18 tumors showed low vascular densities, low vessel diameters, long vessel segments, low blood flow velocities, frequent fluctuations in blood flow, and a high fraction of narrow vessels with absent or very low and varying flux of red blood cells. CONCLUSION The high fraction of acute hypoxia in R-18 tumors was a consequence of frequent fluctuations in blood flow and red blood cell flux combined with low vascular density. The fluctuations were most likely caused by high geometric resistance to blood flow in the tumor microvasculature.
Oncotarget | 2017
Lise Mari K. Andersen; Catherine Sem Wegner; Trude G. Simonsen; Ruixia Huang; Jon Vidar Gaustad; Anette Hauge; Kanthi Galappathi; Einar K. Rofstad
Pancreatic ductal adenocarcinoma (PDAC) patients develop lymph node metastases early and have a particularly poor prognosis. The poor prognosis has been shown to be associated with the physicochemical microenvironment of the tumor tissue, which is characterized by desmoplasia, abnormal microvasculature, extensive hypoxia, and highly elevated interstitial fluid pressure (IFP). In this study, we searched for associations between lymph node metastasis and features of the physicochemical microenvironment in an attempt to identify mechanisms leading to metastatic dissemination and growth. BxPC-3 and Capan-2 PDAC xenografts were used as preclinical models of human PDAC. In both models, lymph node metastasis was associated with high IFP rather than high fraction of hypoxic tissue or high microvascular density. Seven angiogenesis-related genes associated with high IFP-associated lymph node metastasis were detected by quantitative PCR in each of the models, and these genes were all up-regulated in high IFP/highly metastatic tumors. Three genes were mutual for the BxPC-3 and Capan-2 models: transforming growth factor beta, angiogenin, and insulin-like growth factor 1. Further comprehensive studies are needed to determine whether there is a causal relationship between the up-regulation of these genes and high IFP and/or high propensity for lymph node metastasis in PDAC.