Truls Moum
University of Nordland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Truls Moum.
Nature | 2011
Bastiaan Star; Sissel Jentoft; Unni Grimholt; Martin Malmstrøm; Tone F. Gregers; Trine B. Rounge; Jonas Paulsen; Monica Hongrø Solbakken; Animesh Sharma; Ola F. Wetten; Anders Lanzén; Roger Winer; James Knight; Jan-Hinnerk Vogel; Bronwen Aken; Øivind Andersen; Karin Lagesen; Ave Tooming-Klunderud; Rolf B. Edvardsen; Kirubakaran G. Tina; Mari Espelund; Chirag Nepal; Christopher Previti; Bård Ove Karlsen; Truls Moum; Morten Skage; Paul R. Berg; Tor Gjøen; Heiner Kuhl; Jim Thorsen
Atlantic cod (Gadus morhua) is a large, cold-adapted teleost that sustains long-standing commercial fisheries and incipient aquaculture. Here we present the genome sequence of Atlantic cod, showing evidence for complex thermal adaptations in its haemoglobin gene cluster and an unusual immune architecture compared to other sequenced vertebrates. The genome assembly was obtained exclusively by 454 sequencing of shotgun and paired-end libraries, and automated annotation identified 22,154 genes. The major histocompatibility complex (MHC) II is a conserved feature of the adaptive immune system of jawed vertebrates, but we show that Atlantic cod has lost the genes for MHC II, CD4 and invariant chain (Ii) that are essential for the function of this pathway. Nevertheless, Atlantic cod is not exceptionally susceptible to disease under natural conditions. We find a highly expanded number of MHC I genes and a unique composition of its Toll-like receptor (TLR) families. This indicates how the Atlantic cod immune system has evolved compensatory mechanisms in both adaptive and innate immunity in the absence of MHC II. These observations affect fundamental assumptions about the evolution of the adaptive immune system and its components in vertebrates.
Molecular Ecology | 2008
Glenn-Peter Sætre; Thomas Borge; Johan Lindell; Truls Moum; Craig R. Primmer; Ben C. Sheldon; Jon Haavie; Arild Johnsen; Hans Ellegren
Evolutionary history of Muscicapidae flycatchers is inferred from nuclear and mitochondrial DNA (mtDNA) sequence comparisons and population genetic analysis of nuclear and mtDNA markers. Phylogenetic reconstruction based on sequences from the two genomes yielded similar trees with respect to the order at which the species split off. However, the genetic distances fitted a nonlinear, polynomial model reflecting diminishing divergence rate of the mtDNA sequences compared to the nuclear DNA sequences. This could be explained by Haldane’s rule because genetic isolation might evolve more rapidly on the mitochondrial rather than the nuclear genome in birds. This is because hybrid sterility of the heterogametic sex (females) would predate that of the homogametic sex (males), leading to sex biased introgression of nuclear genes. Analyses of present hybrid zones of pied (Ficedula hypoleuca) and collared flycatchers (F. albicollis) may indicate a slight sexual bias in rate of introgression, but the introgression rates were too low to allow proper statistical analyses. It is suggested, however, that the observed deviation from linearity can be explained by a more rapid mutational saturation of the mtDNA sequences than of the nuclear DNA sequences, as supported by analyses of third codon position transversions at two protein coding mtDNA genes. A phylogeographic scenario for the black and white flycatcher species is suggested based on interpretation of the genetic data obtained. Four species appear to have diverged from a common ancestor relatively simultaneously during the Pleistocene. After the last glaciation period, pied and collared flycatchers expanded their breeding ranges and eventually came into secondary contact in Central and Eastern Europe and on the Baltic Isles.
New Biotechnology | 2009
Steinar Johansen; Dag H. Coucheron; Morten Andreassen; Bård Ove Karlsen; Tomasz Furmanek; Tor Erik Jørgensen; Åse Emblem; Ragna Breines; Jarle Tryti Nordeide; Truls Moum; Nils Chr. Stenseth; Kjetill S. Jakobsen
The Atlantic cod (Gadus morhua) is a key species in the North Atlantic ecosystem and commercial fisheries, with increasing aquacultural production in several countries. A Norwegian effort to sequence the complete 0.9Gbp genome by the 454 pyrosequencing technology has been initiated and is in progress. Here we review recent progress in large-scale sequence analyses of the nuclear genome, the mitochondrial genome and genome-wide microRNA identification in the Atlantic cod. The nuclear genome will be de novo sequenced with 25 times oversampling. A total of 120 mitochondrial genomes, sampled from several locations in the North Atlantic, are being completely sequenced by Sanger technology in a high-throughput pipeline. These sequences will be included in a new database for maternal marker reference of Atlantic cod diversity. High-throughput 454 sequencing, as well as Evolutionary Image Array (EvoArray) informatics, is used to investigate the complete set of expressed microRNAs and corresponding mRNA targets in various developmental stages and tissues. Information about microRNA profiles will be essential in the understanding of transcriptome complexity and regulation. Finally, developments and perspectives of Atlantic cod aquaculture are discussed in the light of next-generation high-throughput sequence technologies.
Molecular Ecology | 2001
Truls Moum; Einar Árnason
Geographical variation in two related seabird species, the razorbill (Alca torda) and common guillemot (Uria aalge), was investigated using sequence analysis of mitochondrial DNA (mtDNA) control regions. We determined the nucleotide sequence of the variable 5′ segment of the control region in razorbills and common guillemots from breeding colonies across the Atlantic Ocean. The ecology and life history characteristics of razorbill and common guillemot are in many respects similar. They are both considered highly philopatric and have largely overlapping distributions in temperate and subarctic regions of the North Atlantic, yet the species were found to differ widely in the extent and spatial distribution of mtDNA variation. Moreover, the differences in genetic differentiation and diversity were in the opposite direction to that expected from a consideration of traditional classifications and current population sizes. Indices of genetic diversity were highest in razorbill and varied among colonies, as did genotype frequencies, suggestive of restrictions to gene flow. The distribution of genetic variation suggests that razorbills originated from a refugial population in the south‐western Atlantic Ocean through sequential founder events and subsequent expansion in the east and north. In common guillemots, genetic diversity was low and there was a lack of geographical structure, consistent with a recent population bottleneck, expansion and gene flow. We suggest that the reduced level of genetic diversity and differentiation in the common guillemot is caused by an inherent propensity for repeated population bottlenecks and concomitantly unstable population structure related to their specialized feeding ecology.
Molecular Ecology | 2000
J. Haavie; Glenn-Peter Sætre; Truls Moum
Genetic differentiation between three populations of the pied flycatcher Ficedula hypoleuca (Norway, Czech Republic and Spain, respectively) was investigated at microsatellite loci and mitochondrial DNA (mtDNA) sequences and compared with the pattern of differentiation of male plumage colour. The Czech population lives sympatrically with the closely related collared flycatcher (F. albicollis) whereas the other two are allopatric. Allopatric populations are on average more conspicuously coloured than sympatric ones, a pattern that has been explained by sexual selection for conspicuous colour in allopatry and a character displacement on breeding plumage colour in sympatry that reduces the rate of hybridization with the collared flycatcher. The Czech population was genetically indistinguishable from the Norwegian population at microsatellite loci and mtDNA sequences. Recent isolation and/or gene flow may explain the lack of genetic differentiation. Accordingly, different selection on plumage colour in the two populations is either sufficiently strong so that gene flow has little impact on the pattern of colour variation, or differentiation of plumage colour occurred so recently that the (presumably) neutral, fast evolving markers employed here are unable to reflect the differentiation. Genetically, the Spanish population was significantly differentiated from the other populations, but the divergence was much more pronounced at mtDNA compared to microsatellites. This may reflect increased rate of differentiation by genetic drift at the mitochondrial, compared with the nuclear genome, caused by the smaller effective population size of the former genome. In accordance with this interpretation, a genetic pattern consistent with effects of small population size in the Spanish population (genetic drift and inbreeding) were also apparent at the microsatellites, namely reduced allelic diversity and heterozygous deficiency.
Current Genetics | 1995
Thomas Berg; Truls Moum; Steinar Johansen
We have analyzed a variable domain of the mitochondrial DNA control region of 18 avian species. intra-individual length variation was identified and characterized in 15 species. The occurrence of heteroplasmy among species is phylogenetically consistent with a current classification of birds. Polymerase chain reaction amplifications, direct sequencing, and Southern analysis of mitochondrial DNA showed that the heteroplasmy is due to variable numbers of direct repeats in a tandem organization, located in the control region close to the tRNAPhe gene. The tandem repeats consist of short sequence motifs that vary in size from 4 to 32 base pairs between species. Sequence complexity of the repeat motifs was low, with almost exclusively Ts and Gs in the heavy-strand. Extensive variation in the copy number of the repeats was seen both intra-specifically and within individuals. This is the first report of mitochondrial heteroplasmy characterized at the sequence level in birds.
Environment International | 2011
Igor Eulaers; Adrian Covaci; Dorte Herzke; Marcel Eens; Christian Sonne; Truls Moum; Lisbeth Schnug; Sveinn Are Hanssen; Trond Vidar Johnsen; Jan Ove Bustnes; Veerle L.B. Jaspers
In previous studies, feathers of adult predatory birds have been evaluated as valid non-destructive biomonitor matrices for persistent organic pollutants (POPs). In this study, we assessed for the first time the usefulness of nestling raptor feathers for non-destructive biomonitoring of POPs. For this purpose, we collected body feathers and blood of nestlings from three avian top predators from northern Norway: northern goshawks (Accipiter gentilis), white-tailed eagles (Haliaeetus albicilla) and golden eagles (Aquila chrysaetos). We were able to detect a broad spectrum of legacy POPs in the nestling feathers of all three species (Σ PCBs: 6.78-140ng g(-1); DDE: 3.15-145ng g(-1); Σ PBDEs: 0.538-7.56ng g(-1)). However, these concentrations were lower compared to other studies on raptor species, probably due to the aspect of monitoring of nestlings instead of adults. Besides their analytical suitability, nestling feathers also appear to be biologically informative: concentrations of most POPs in nestling feathers showed strong and significant correlations with blood plasma concentrations in all species (p<0.050; 0.775<r<0.994). In addition, the reported correlations between feathers and blood plasma were much higher than those previously reported for adult individuals. Accumulation profiles and species-specific differences were in accordance with other toxicological studies on avian species and generally in agreement with the specific ecology of the studied species. In summary, our results indicate that the use of nestling feathers of northern raptors may be a valid and promising non-destructive biomonitoring strategy for POPs in their ecosystems.
BMC Genomics | 2008
Kenneth A. Mjelle; Bård Ove Karlsen; Tor Erik Jørgensen; Truls Moum; Steinar Johansen
BackgroundHalibuts are commercially important flatfish species confined to the North Pacific and North Atlantic Oceans. We have determined the complete mitochondrial genome sequences of four specimens each of Atlantic halibut (Hippoglossus hippoglossus), Pacific halibut (Hippoglossus stenolepis) and Greenland halibut (Reinhardtius hippoglossoides), and assessed the nucleotide variability within and between species.ResultsAbout 100 variable positions were identified within the four specimens in each halibut species, with the control regions as the most variable parts of the genomes (10 times that of the mitochondrial ribosomal DNA). Due to tandem repeat arrays, the control regions have unusually large sizes compared to most vertebrate mtDNAs. The arrays are highly heteroplasmic in size and consist mainly of different variants of a 61-bp motif. Halibut mitochondrial genomes lacking arrays were also detected.ConclusionThe complexity, distribution, and biological role of the heteroplasmic tandem repeat arrays in halibut mitochondrial control regions are discussed. We conclude that the most plausible explanation for array maintenance includes both the slipped-strand mispairing and DNA recombination mechanisms.
Molecular Ecology | 2013
Bård Ove Karlsen; Kevin Klingan; Åse Emblem; Tor Erik Jørgensen; Alexander Jueterbock; Tomasz Furmanek; Galice Hoarau; Steinar Johansen; Jarle Tryti Nordeide; Truls Moum
Atlantic cod displays a range of phenotypic and genotypic variations, which includes the differentiation into coastal stationary and offshore migratory types of cod that co‐occur in several parts of its distribution range and are often sympatric on the spawning grounds. Differentiation of these ecotypes may involve both historical separation and adaptation to ecologically distinct environments, the genetic basis of which is now beginning to be unravelled. Genomic analyses based on recent sequencing advances are able to document genomic divergence in more detail and may facilitate the exploration of causes and consequences of genome‐wide patterns. We examined genomic divergence between the stationary and migratory types of cod in the Northeast Atlantic, using next‐generation sequencing of pooled DNA from each of two population samples. Sequence data was mapped to the published cod genome sequence, arranged in more than 6000 scaffolds (611 Mb). We identified 25 divergent scaffolds (26 Mb) with a higher than average gene density, against a backdrop of overall moderate genomic differentiation. Previous findings of localized genomic divergence in three linkage groups were confirmed, including a large (15 Mb) genomic region, which seems to be uniquely involved in the divergence of migratory and stationary cod. The results of the pooled sequencing approach support and extend recent findings based on single‐nucleotide polymorphism markers and suggest a high degree of reproductive isolation between stationary and migratory cod in the North‐east Atlantic.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2011
Steinar Johansen; Bård Ove Karlsen; Tomasz Furmanek; Morten Andreassen; Tor Erik Jørgensen; Teshome Tilahun Bizuayehu; Ragna Breines; Åse Emblem; Päivi Kettunen; Keijo Luukko; Rolf B. Edvardsen; Jarle Tryti Nordeide; Dag H. Coucheron; Truls Moum
The Atlantic cod (Gadus morhua) is an emerging aquaculture species. Efforts to develop and characterize its genomic recourses, including draft-grade genome sequencing, have been initiated by the research community. The transcriptome represents the whole complement of RNA transcripts in cells and tissues and reflects the expressed genes at various life stages, tissue types, physiological states, and environmental conditions. We are investigating the Atlantic cod transcriptome by Roche 454, Illumina GA, and ABI SOLiD deep sequencing platforms and corresponding bioinformatics. Both embryonic developmental stages and adult tissues are studied. Here we summarize our recent progress in the analyses of nuclear and mitochondrial polyA mRNAs, non-protein-coding intermediate RNAs, and regulatory microRNAs.