Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trushar R. Patel is active.

Publication


Featured researches published by Trushar R. Patel.


Glycobiology | 2008

Pectic polysaccharides from Biophytum petersianum Klotzsch, and their activation of macrophages and dendritic cells.

Marit Inngjerdingen; Kari Tvete Inngjerdingen; Trushar R. Patel; Stephanie Allen; Xinyong Chen; Bent Rolstad; Gordon A. Morris; Stephen E. Harding; Terje E. Michaelsen; Drissa Diallo; Berit Smestad Paulsen

The Malian medicinal plant Biophytum petersianum Klotzsch (Oxalidaceae) is used as a treatment against various types of illnesses related to the immune system, such as joint pains, inflammations, fever, malaria, and wounds. A pectic polysaccharide obtained from a hot water extract of the aerial parts of B. petersianum has previously been reported to consist of arabinogalactans types I and II (AG-I and AG-II), probably linked to a rhamnogalacturonan backbone. We describe here further structural characteristics of the main polysaccharide fraction (BP1002) and fractions obtained by enzymatic degradations using endo-alpha-d-(1-->4)-polygalacturonase (BP1002-I to IV). The results indicate that in addition to previously reported structures, rhamnogalacturan type II and xylogalacturonan areas appear to be present in the pectic polymer isolated from the plant. Atomic force microscopy confirmed the presence of branched structures, as well as a polydisperse nature. We further tested whether the BP1002 main fraction or the enzymatically degraded products could induce immunomodulating activity through stimulation of subsets of leukocytes. We found that macrophages and dendritic cells were activated by BP1002 fractions, while there was little response of T cells, B cells, and NK cells. The enzymatic treatment of the BP1002 main fraction gave important information on the structure-activity relations. It seems that the presence of rhamnogalacturonan type I is important for the bioactivity, as the bioactivity decreases with the decreased amounts of rhamnose, galactose, and arabinose. The demonstration of bioactivity by the plant extracts might indicate the mechanisms behind the traditional medical use of the plant.


Biophysical Reviews | 2016

Dynamic light scattering: a practical guide and applications in biomedical sciences

Jörg Stetefeld; Sean A. McKenna; Trushar R. Patel

Dynamic light scattering (DLS), also known as photon correlation spectroscopy (PCS), is a very powerful tool for studying the diffusion behaviour of macromolecules in solution. The diffusion coefficient, and hence the hydrodynamic radii calculated from it, depends on the size and shape of macromolecules. In this review, we provide evidence of the usefulness of DLS to study the homogeneity of proteins, nucleic acids, and complexes of protein–protein or protein–nucleic acid preparations, as well as to study protein–small molecule interactions. Further, we provide examples of DLS’s application both as a complementary method to analytical ultracentrifugation studies and as a screening tool to validate solution scattering models using determined hydrodynamic radii.


Journal of Biological Chemistry | 2013

Binding of G-quadruplexes to the N-terminal recognition domain of the RNA helicase associated with AU-rich element (RHAU).

Markus Meier; Trushar R. Patel; Evan P. Booy; Oksana Marushchak; Natalie Okun; Soumya Deo; Ryan Howard; Kevin McEleney; Stephen E. Harding; Jörg Stetefeld; Sean A. McKenna

Background: The helicase RHAU requires an N-terminal extension to bind quadruplex structures. Results: This extension adopts an elongated shape and interacts with the guanine tetrad face of quadruplexes. Conclusion: We provide a basis for the understanding of quadruplex binding by the N-terminal domain. Significance: The N-terminal region does not require the 2′-OH of the ribose to mediate the protein-quadruplex interaction. Polynucleotides containing consecutive tracts of guanines can adopt an intramolecular G-quadruplex structure where multiple planar tetrads of hydrogen-bound guanines stack on top of each other. Remodeling of G-quadruplexes impacts numerous aspects of nucleotide biology including transcriptional and translational control. RNA helicase associated with AU-rich element (RHAU), a member of the ATP-dependent DEX(H/D) family of RNA helicases, has been established as a major cellular quadruplex resolvase. RHAU contains a core helicase domain responsible for ATP binding/hydrolysis/helicase activity and is flanked on either side by N- and C-terminal extensions. The N-terminal extension is required for quadruplex recognition, and we have previously demonstrated complex formation between this domain and a quadruplex from human telomerase RNA. Here we used an integrated approach that includes small angle x-ray scattering, nuclear magnetic resonance spectroscopy, circular dichroism, and dynamic light scattering methods to demonstrate the recognition of G-quadruplexes by the N-terminal domain of RHAU. Based on our results, we conclude that (i) quadruplex from the human telomerase RNA and its DNA analog both adopt a disc shape in solution, (ii) RHAU53–105 adopts a defined and extended conformation in solution, and (iii) the N-terminal domain mediates an interaction with a guanine tetrad face of quadruplexes. Together, these data form the foundation for understanding the recognition of quadruplexes by the N-terminal domain of RHAU.


Matrix Biology | 2010

Nano-structure of the laminin γ-1 short arm reveals an extended and curved multidomain assembly

Trushar R. Patel; Gordon A. Morris; Daniela Zwolanek; Douglas R. Keene; Jianhua Li; Stephen E. Harding; Manuel Koch; Jörg Stetefeld

Laminins are multidomain glycoproteins that play important roles in development and maintenance of the extracellular matrix via their numerous interactions with other proteins. Several receptors for the laminin short arms revealed their importance in network formation and intercellular signaling. However, both the detailed structure of the laminin γ-1 short arm and its organization within the complexes is poorly understood due to the complexity of the molecule and the lack of a high-resolution structure. The presented data provide the first subatomic resolution structure for the laminin γ-1 short arm in solution. This was achieved using an integrated approach that combined a number of complementary biophysical techniques such as small angle X-ray scattering (SAXS), analytical ultracentrifugation, dynamic light scattering and electron microscopy. As a result of this study, we have obtained a significantly improved model for the laminin γ-1 short arm that represents a major step forward in molecular understanding of laminin-mediated complex formations.


Macromolecular Bioscience | 2008

Molecular Flexibility of Methylcelluloses of Differing Degree of Substitution by Combined Sedimentation and Viscosity Analysis

Trushar R. Patel; Gordon A. Morris; José García de la Torre; Alvaro Ortega; Petra Mischnick; Stephen E. Harding

The flexibility/rigidity of methylcelluloses (MCs) plays an important part in their structure-function relationship and therefore on their commercial applications in the food and biomedical industries. In the present study, two MCs of low degree of substitution (DS) 1.09 and 1.32 and four of high DS (1.80, 1.86, 1.88 and 1.93) were characterised in distilled water in terms of intrinsic viscosity [h]; sedimentation coefficient (s020,w) and weight average molar mass (Mw). Solution conformation and flexibility were estimated qualitatively using conformation zoning and quantitatively (persistence length Lp) using the new combined global method. Sedimentation conformation zoning showed an extended coil (Type C) conformation and the global method applied to each MC sample yielded persistence lengths all within the range Lp(1/4)12-17 nm (for a fixed mass per unit length) with no evidence of any significant change in flexibility with DS.


Journal of Biological Chemistry | 2015

The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide.

Grishma Vadlamani; Misty D. Thomas; Trushar R. Patel; Lynda J. Donald; Thomas M. Reeve; Jörg Stetefeld; Kenneth G. Standing; David J. Vocadlo; Brian L. Mark

Background: Peptidoglycan metabolites regulate AmpR-mediated control of ampC β-lactamase expression. Results: AmpR binds DNA as a tetramer and interacts with up to four copies of its repressor UDP-MurNAc-pentapeptide via its d-Ala-d-Ala motif. Conclusion: d-Ala-d-Ala recognition supports 1,6-anhydroMurNAc-pentapeptide as an AmpR activator, probably through competitive binding with UDP-MurNAc-pentapeptide. Significance: Understanding how peptidoglycan metabolites modulate AmpR provides insight into how β-lactam classes differentially induce ampC expression. Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal d-Ala-d-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the d-Ala-d-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function.


RNA | 2013

Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR.

Edis Dzananovic; Trushar R. Patel; Soumya Deo; Kevin McEleney; Jörg Stetefeld; Sean A. McKenna

In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem-loops; HIV-1 TAR and adenovirus VA(I)-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA-protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.


PLOS ONE | 2014

Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome.

Soumya Deo; Trushar R. Patel; Edis Dzananovic; Evan P. Booy; Khalid Zeid; Kevin McEleney; Stephen E. Harding; Sean A. McKenna

West Nile virus (WNV) has a positive sense RNA genome with conserved structural elements in the 5′ and 3′ -untranslated regions required for polyprotein production. Antiviral immunity to WNV is partially mediated through the production of a cluster of proteins known as the interferon stimulated genes (ISGs). The 2′ 5′-oligoadenylate synthetases (OAS) are key ISGs that help to amplify the innate immune response. Upon interaction with viral double stranded RNA, OAS enzymes become activated and enable the host cell to restrict viral propagation. Studies have linked mutations in the OAS1 gene to increased susceptibility to WNV infection, highlighting the importance of OAS1 enzyme. Here we report that the region at the 5′-end of the WNV genome comprising both the 5′-UTR and initial coding region is capable of OAS1 activation in vitro. This region contains three RNA stem loops (SLI, SLII, and SLIII), whose relative contribution to OAS1 binding affinity and activation were investigated using electrophoretic mobility shift assays and enzyme kinetics experiments. Stem loop I, comprising nucleotides 1-73, is dispensable for maximum OAS1 activation, as a construct containing only SLII and SLIII was capable of enzymatic activation. Mutations to the RNA binding site of OAS1 confirmed the specificity of the interaction. The purity, monodispersity and homogeneity of the 5′-end (SLI/II/III) and OAS1 were evaluated using dynamic light scattering and analytical ultra-centrifugation. Solution conformations of both the 5′-end RNA of WNV and OAS1 were then elucidated using small-angle x-ray scattering. In the context of purified components in vitro, these data demonstrate the recognition of conserved secondary structural elements of the WNV genome by a member of the interferon-mediated innate immune response.


Matrix Biology | 2012

Determination of a molecular shape for netrin-4 from hydrodynamic and small angle X-ray scattering measurements

Trushar R. Patel; Raphael Reuten; Shawn Xiong; Markus Meier; Donald J. Winzor; Manuel Koch; Jörg Stetefeld

As part of a continuing investigation of netrins, an emerging class of extracellular matrix proteins that are involved in axon guidance activity, we have used dynamic light scattering (DLS) and small angle X-ray scattering to investigate the solution conformation of a truncated version of netrin-4 (Δnetrin-4) that lacks the C-terminal portion. The protein is characterized by a hydrodynamic (Stokes) radius (r(H)) of 4.60 (±0.20) nm, a radius of gyration (r(G)) of 4.42 (±0.20) nm and a maximum particle dimension (D(max)) of 16nm. More detailed ab initio modeling of the SAXS data indicates an extended rod like conformation for Δnetrin-4 in solution-a concept supported by the excellent agreement observed between experimental parameter estimates and those calculated for the ab initio models for Δnetrin-4 by the HYDROPRO program.


Journal of Structural Biology | 2014

Solution conformation of adenovirus virus associated RNA-I and its interaction with PKR

Edis Dzananovic; Trushar R. Patel; Grzegorz Chojnowski; Michal Boniecki; Soumya Deo; Kevin McEleney; Stephen E. Harding; Janusz M. Bujnicki; Sean A. McKenna

Adenovirus virus-associated RNA (VAI) provides protection against the host antiviral response in part by inhibiting the interferon-induced double stranded RNA-activated protein kinase (PKR). VAI consists of three base-paired regions; the apical stem responsible for the interaction with double-stranded RNA binding motifs (dsRBMs) of PKR, the central stem required for inhibition, and the terminal stem. The solution conformation of VAI and VAI lacking the terminal stem were determined using SAXS that suggested extended conformations that are in agreement with their secondary structures. Solution conformations of VAI lacking the terminal stem in complex with the dsRBMs of PKR indicated that the apical stem interacts with both dsRNA-binding motifs whereas the central stem does not. Hydrodynamic properties calculated from ab initio models were compared to experimentally determined parameters for model validation. Furthermore, SAXS envelopes were used as a constraint for the in silico modeling of tertiary structure for RNA and RNA-protein complex. Finally, full-length PKR was also studied, but concentration-dependent changes in hydrodynamic parameters prevented ab initio shape determination. Taken together, results provide an improved structural framework that further our understanding of the role VAI plays in evading host innate immune responses.

Collaboration


Dive into the Trushar R. Patel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge